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An efficient stochastic diffusion algorithm for modeling
second messengers in dendrites and spines
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Abstract

Intracellular signaling pathways, which encompass both biochemical reactions and second messenger diffusion, interact non-linearly with
neuronal membrane properties in their role as essential intermediaries for synaptic plasticity and neuromodulation. Computational modeling is a
productive approach for investigating these phenomena; however, most current strategies for modeling neurons exclude signaling pathways. To
overcome this deficiency, a new algorithm is presented to simulate stochastic diffusion in a highly efficient manner. The gain in speed is obtained by
considering collections of molecules, instead of tracking the movement of individual molecules. The probability of a molecule leaving a spatially
discrete compartment is used to create a lookup table that stores the probability of km molecules leaving the compartment as a function of the total
number of molecules in the compartment. During the simulation, the number of molecules leaving the compartment is determined using a uniform
random number as an index into the lookup table. Simulations illustrate the accuracy of this algorithm by comparing it with the theoretical solution
for deterministic diffusion. Additional simulations show how spines on a dendritic branch compartmentalize diffusible molecules. The efficiency
of the algorithm is sufficient to allow simulation of second messenger pathways in a multitude of spines on an entire neuron.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Intracellular signaling pathways, which encompass both bio-
chemical reactions and second messenger diffusion, are crit-
ically intertwined with neuronal function, as has been doc-
umented in several brain areas. In the hippocampus, AMPA
receptors are modulated by several kinases and phosphatases
(Malinow et al., 1989; Malenka et al., 1989; Tsien et al., 1996;
Abel et al., 1997) which themselves are activated by calcium
influx through NMDA receptors and voltage-dependent chan-
nels. In the striatum, several membrane channels are modulated
by DARPP-32 signaling pathways (Surmeier et al., 1995), which
activation depends on neuronal activity. These non-linear and
feedback interactions make it exceedingly difficult to under-
stand how neuronal activity is modulated by spatio-temporal
input patterns that occur in vivo.

Computational modeling is an innovative, yet practical
method to investigate neuronal function. On the macroscopic
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scale, modeling has made significant contributions regarding the
influence of morphology and channel properties on neuronal
integration (e.g. Poirazi et al., 2003a, 2003b; Migliore et al.,
2004). On the microscopic scale, computational models of cellu-
lar signaling pathways have been employed to understand neuro-
transmitter release and generation of miniature endplate currents
(e.g. Stiles et al., 1999), as well as kinase activation in spines (e.g.
Bhalla, 2004a, 2004b). However, due to computational complex-
ity, most current strategies for modeling neurons exclude either
complex molecular interactions or electrical membrane proper-
ties that underlie synaptic modulation. The few neuron models
that do include reaction–diffusion subsystems employ continu-
ous, deterministic equations (e.g. Blackwell, 2004; Fink et al.,
2000), which assume large numbers of molecules in each com-
partment.

An intermediate approach, on the mesoscopic scale, is
required to adequately model the interaction between cell signal-
ing pathways and neuronal activity. The biochemical reactions
leading to activation of kinases and phosphatases are localized
to dendritic spines (Rosenmund et al., 1994; Westphal et al.,
1998); thus these small structures must be included in whole
neuron models. A stochastic approach is required to adequately
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describe bimolecular interactions among the small numbers of
molecules within the spine (Gillespie, 1977) because activations
fluctuate greatly about the mean within such small compart-
ments. Similarly, diffusion of second messenger molecules out
of the spines and along the thin dendrites also must be described
using stochastic equations. Thus, an effective model of synaptic
modulation requires the fusion of the complexities of neuronal
membrane physiology with highly efficient models of molecular
interactions.

Though highly efficient algorithms for stochastic bimolecu-
lar reactions are available (e.g. Gibson and Bruck, 2000; Cao et
al., 2005), algorithms for stochastic diffusion are less numerous.
The simplest diffusion algorithms employ random walk with dis-
cretized space and time. The disadvantage is that increased accu-
racy requires finer (and thus computationally slower) time dis-
cretization. To integrate with biochemical reactions, only those
molecules in the same spatial location are considered for inter-
actions. Another discrete space approach for reaction–diffusion
systems is to consider diffusion as an additional reaction. The
appropriate reaction coefficient (diffusion propensity) is calcu-
lated from the diffusion coefficient and the geometry (compart-
ment size). Two algorithms employ this approach (Elf et al.,
2003; Bhalla, 2004a), but these algorithms consider individual
molecules, and thus may not scale well for neurons. An alterna-
tive and more efficient approach is to avoid spatial discretization
and to use ray tracing to evaluate when diffusers interact (e.g.
Stiles and Bartol, 2001; Tuerlinckx et al., 2001). Though the
Monte Carlo algorithm employed by MCell is the most compu-
tationally efficient method for creating exact stochastic simula-
tions of diffusion and reactions, reactions are not allowed among
two diffusing species. Further gains in speed are required for
modeling diffusion and reactions in entire neurons.

The algorithm presented below is an accelerated approxima-
tion to stochastic diffusion. Though a spatial discretization is
employed, the gain in speed is obtained by considering col-
lections of molecules, instead of tracking the movement of
individual molecules. The efficiency of the algorithm is suffi-
cient to allow simulation of second messenger pathways in a
multitude of spines on the dendritic trees of an entire neuron.

2. Methods

Consider a structure, such as a spine subdivided into spatial
compartments of length �x. The probability that a molecule will
leave the spatial compartment is proportional to the time step,
�T, multiplied by the diffusion coefficient, D, divided by the
length of the compartment, �x (Elf et al., 2003; Bhalla, 2004a):

Pm = 2D
�T

�x2 (1)

Of the molecules that leave the compartment, half will move
forward, and half will move backward; the remaining molecules
in the compartment will not leave the compartment. The compu-
tational efficiency arises from the recognition that, given these
three probabilities: moving forward (pf = Pm/2), moving back-
ward (pb = Pm/2) or not moving (pn = 1 − Pm), the number of
molecules moving forward (kf), backward (kb), or not leaving

(N − kf − kb) in a compartment can be calculated with the trino-
mial distribution:

P(N, kf, kb) = N!

kf!kb!(N − kf − kb)!
pkf

f pkb
b p(N−kf−kb)

n (2)

Thus, if a compartment contains 20 molecules, instead of choos-
ing 20 random numbers, it is only necessary to choose a single
random number to determine the destination of each molecule
within a compartment. Though trinomial random numbers are
expensive to generate, the use of a pre-defined lookup table,
which stores cumulative probabilities as a function of N, kf and
kb, allows the algorithm to use uniform random numbers.

Two minor differences are required to apply the algorithm
to diffusion in two or three dimensions. First, the probability of
leaving the compartment, pm, must account for additional spatial
dimensions, e.g. in two dimensions:

pm = 2D�T

�x2 + 2D�T

�y2 + (2D�T )2

�x2�y2 (3)

where �x and �y are the sizes of the two-dimensional compart-
ment. Second, the number of particles moving, km, is calculated
from the binomial:

P(N, km) = N!

(N − km)!km!
pkm

m (1 − pm)(N−km) (4)

Similar to the one-dimensional algorithm, a pre-defined lookup
table that stores cumulative binomial probabilities allows km to
be determined with a single uniform random number. Specifi-
cally, given the random number u and total number of molecules
N, a binary search of row N in binomial table TB is used to find
the binomial probability table entry, TB(N, j), such that TB(N,
j − 1) < u < TB(N, j). Then the number of moving molecules is
read out from a parallel lookup table, TK that stores the cor-
responding number of moving molecules, using row N and
index j: km = TK(N, j). After the number of moving molecules
is calculated, the destination compartment of each molecule is
determined in a similar manner using a uniform random number
as index to a table which stores the probability of moving in each
compartment direction.

The algorithm is illustrated in Fig. 1. A flow chart of the ini-
tialization steps is portrayed in Fig. 1A. First, the geometry of the
structure is defined. For a neuron, each segment of the dendritic
tree is subdivided into equal size compartments. Second, the
connectivity of the compartments is stored in an array. From the
compartment size, diffusion coefficient, and time step, the proba-
bility is calculated of a molecule moving from one compartment
to any adjacent compartment. Third, the binomial distribution
(or trinomial distribution where 1D is appropriate) is used to cre-
ate the table of probabilities that km out of N molecules leaves the
compartment, for N between 1 and Nmax. Lastly, a second table
is created which enumerates the probabilities of moving in each
direction (i.e. North, South, Northeast, etc). In circumstances
where the dendrites have spines, a connection array is created
to map each spine to a dendritic compartment, and the direction
table is modified to include the probability of a molecule moving
into a spine.
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