
Science of Computer Programming 96 (2014) 396–416

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A tutorial on metamodelling for grammar researchers

Richard F. Paige ∗, Dimitrios S. Kolovos, Fiona A.C. Polack

Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, United Kingdom

h i g h l i g h t s

• We provide a tutorial introduction to metamodelling.
• We compare metamodelling with basic grammar technology.
• We examine three distinctive examples of metamodelling.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2013
Received in revised form 20 March 2014
Accepted 5 May 2014
Available online 28 May 2014

Keywords:
Metamodelling
Models
Grammars
Bridges
Unification

A metamodel has been defined as: a model of a model; a definition of a language; 
a description of abstract syntax; and a description of a domain. Because of these varied 
definitions, it is difficult to explain why metamodels are constructed, what can be done 
with them, and how they are built. This tutorial introduces the key concepts, terminology 
and philosophy behind metamodelling, focusing on its use for language engineering, and 
expressed in a way that is intended to be accessible to researchers who may be more 
familiar with the use of traditional context-free grammar techniques. We highlight the 
main differences between metamodelling and grammar-based approaches, describe how to 
map metamodelling concepts and techniques to grammar concepts and techniques, and 
highlight some of the strengths and weaknesses of metamodelling via a set of small, but 
realistic examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Grammarware is the collection of grammars and grammar-aware theories and software [23]. The definition is very broad, 
and includes context-free grammars, graph grammars, XML schemas, class dictionaries and other techniques. In this paper, 
we restrict our focus to a subset of grammarware techniques – those that exploit context-free grammars (e.g., Backus–Naur 
Form, traditional parsing and semantic analysis techniques); these should be familiar to a significant number of readers Mod-
elware, by contrast, is the collection of models, metamodels, model-aware theories and software systems. At the heart of 
modelware – influencing its theories, practices, tools and applications – is metamodelling. This paper provides an introduc-
tion to metamodelling for grammar researchers, focusing on traditional grammar technologies like context-free grammars 
and parsers. Our specific focus is on how metamodelling is used for language engineering, e.g., for implementing editors and 
analysis tools for domain-specific languages, general-purpose languages, etc. We assume that such researchers are comfort-
able and experienced with defining and implementing grammars (e.g., using Extended Backus–Naur Form (EBNF)), parser 
generator tools, and grammar-based manipulation of languages (e.g., for compilation, analysis, extraction and comparison); 
advanced grammar-based techniques (such as graph grammars and attribute grammars) are out of scope for comparison 

* Corresponding author.
E-mail addresses: richard.paige@york.ac.uk (R.F. Paige), dimitris.kolovos@york.ac.uk (D.S. Kolovos), fiona.polack@york.ac.uk (F.A.C. Polack).

http://dx.doi.org/10.1016/j.scico.2014.05.007
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.05.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:richard.paige@york.ac.uk
mailto:dimitris.kolovos@york.ac.uk
mailto:fiona.polack@york.ac.uk
http://dx.doi.org/10.1016/j.scico.2014.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.05.007&domain=pdf


R.F. Paige et al. / Science of Computer Programming 96 (2014) 396–416 397

and consideration in this paper. We also assume that these researchers have little or no experience with metamodelling, 
but are interested in the terminology relevant to metamodelling, how metamodelling is done, and what can be done with 
metamodels. Such researchers may be motivated to find ways to explain their research to modellers, and may seek to better 
understand modelling research.

The entry barrier to metamodelling can be high, not least because of the cumbersome terminology, and an absence of 
standard definitions. In this tutorial, we aim to lower the entry barrier to metamodelling, by building on essential knowledge 
of grammars.

We start the tutorial in Section 2 with some basic definitions, illustrated with very small examples of metamodels, 
constructed in different languages, that will hopefully be accessible and reasonably familiar to grammar researchers. In 
Section 3 we discuss the different motivations that exist for constructing metamodels, and suggest a number of activities and 
tasks that are possible once metamodels have been constructed and implemented. We also explain a typical metamodelling 
process, which will help to clarify some of the key differences between metamodelling and grammar-based approaches to 
language design. In Section 4, we compare metamodelling and grammars in some detail, in terms of some basic terminology, 
key conceptual differences, and the strengths and weaknesses of modelware and grammarware. We also briefly explain how 
to map key concepts from modelware to grammarware, focusing on the technical level (i.e., how implementation concepts 
from metamodelling can be encoded as grammar concepts). Finally, in Section 5, we present three examples that apply the 
metamodelling process, showing the construction of metamodels, and illustrating how they may be used to solve a selection 
of problems.

This paper is a substantially extended and thoroughly revised version of a tutorial that was first presented in [28]. Besides 
being a complete revision of the text from that paper, additional material includes a simple comparison of metamodelling 
and grammar concepts and techniques, a mapping from metamodel concepts to grammar concepts, and an additional de-
tailed example shows the use of metamodelling techniques in the complex systems domain.

2. Definitions and examples

To understand what is a metamodel, and to define it precisely, it is convenient to first define model. We take a broad 
interpretation of the term, as captured in the following definition.

Definition. A model is a formal description of phenomena of interest, constructed for a specific purpose, and amenable to 
manipulation by automated tools.

Let us consider each part in turn. Descriptions (used in the sense of Jackson [22]) are fundamental in software and 
systems engineering; a formal description is made according to rules that have been specified, and that can be checked 
against. A model abstracts from the real world; as such, some phenomena are considered to be in-scope, and others are 
out-of-scope. Descriptions are also externalised (i.e., they are not mental models, or what are sometimes called representa-
tions) and can be exchanged and shared between stakeholders. Many different descriptions can be constructed of the same 
phenomena; it is important to understand the purpose to which the description will be put. For example, an operational 
model of sensor behaviour may be appropriate for simulation or exhaustive state exploration, but it would be inconvenient 
for proof of certain properties (because an operational model may lead to a very large state space in, e.g., a model checker). 
Finally, the manipulation of models by automated tools encompasses automatable model management tasks such as model 
transformation, comparison or validation. Models can thus be of phenomena related to, for example, systems or software 
engineering, or experimental science, or other problems.

Given a model, when is it valid? For example, given a finite state machine diagram, how can we determine if it is a 
valid diagram? Parts of the model validation problem are conceptually identical to the problem of determining whether a 
sentence is valid according to a grammar. For a finite state machine diagram we would want to ensure that only valid 
symbols (rounded rectangles, arrows, labels) are used, and that only states are connected by transitions (for example). We 
need an equivalent to a grammar, for models; the equivalent is, at least informally, a metamodel (though as we shall see, 
metamodels can express simple validity properties that go beyond those expressible using BNF).

Many definitions have been provided of the term metamodel. Among key literature in the area are Bézivin’s papers on 
software modernisation [2] and On the Unification Power of Models [3]; and Atkinson and Kühne’s Model-Driven Development: a 
Metamodelling Foundation [1]. The Object Management Group (OMG) has published numerous metamodel-related standards, 
including its MDA Foundation Model [12] which includes the OMG definitions of metamodelling. As yet, there is no expert 
consensus on a precise definition of metamodel, and differences in terminology across the definitions promote confusion.

Since our purpose is to lower the entry barrier to metamodelling, we adopt a simple definition, which is compatible 
with other researchers’ definitions, but expressed in an unambiguous way.

Definition. A metamodel is a description of the abstract syntax of a language, capturing its concepts and relationships, using 
modelling infrastructure.

A language may be general-purpose (e.g., UML, SysML) or it may be domain-specific (e.g., for computer forensics [30]) – 
the latter we term domain-specific languages (DSLs). Both types of languages (for software or systems engineering) have an 



Download English Version:

https://daneshyari.com/en/article/433709

Download Persian Version:

https://daneshyari.com/article/433709

Daneshyari.com

https://daneshyari.com/en/article/433709
https://daneshyari.com/article/433709
https://daneshyari.com

