Theoretical Computer Science 611 (2016) 136-141

Contents lists available at ScienceDirect & oorcteal

Theoretical Computer Science

www.elsevier.com/locate/tcs e

Note

Controlling loosely cooperating processes @CmssMark

Anca Muscholl?, Sven Schewe P*

@ LaBRI, Université Bordeaux, Talence, France
b Department of Computer Science, University of Liverpool, Liverpool, United Kingdom

ARTICLE INFO ABSTRACT

Article history: In this article, we consider the problem of controlling loosely cooperating processes. We
Received 23 May 2013 show that this distributed control problem is EXPTIME-complete if we restrict the number
Received in revised form 12 February 2015 of processes to two, and undecidable for three or more processes.

Accepted 25 July 2015 © 2015 Elsevier B.V. All rights reserved.

Available online 29 July 2015
Communicated by P.-A. Mellies

Keywords:

Control and games

Zielonka automata

Loosely cooperating processes

1. Introduction

Asynchronous processes that synchronise on shared actions [6,5,2] are a popular model for distributed systems. In this
article, we discuss the control problem for such processes [11]. The control problem is to check whether or not each
process has a local controller that restricts the set of runs by disabling some controllable actions in such a way that all joint
behaviours satisfy a given local property on each process.

When studying the control problem, a major design decision is the knowledge the processes have about each other. We
study loosely cooperating processes [13]. Loosely cooperating processes, and hence their local controllers, obtain no additional
knowledge by performing shared actions with other processes. All they know about other processes is what they can infer
from their local history, in particular the history of their cooperation with other processes. Synthesis of loosely cooperating
processes (or synchronised products of transition systems) from regular specifications has a simple solution for local acceptance
conditions [13,9] and is an open problem if the acceptance is global (see [1] for partial results).

We show that the control problem for loosely cooperating processes is undecidable even for local reachability! properties.
The proof is related to the undecidability of distributed control in the Pnueli and Rosner framework [10,3] with local
specifications [7] and the synthesis problem for asynchronous distributed systems [12].

While these undecidability proofs [10,3,7,12] require only two processes, our undecidability proof uses three processes.
This raises the question whether the third process is necessary, and we show that it is: we establish that local control is
decidable (and EXPTIME-complete) in the two process case. The third process is therefore not a particularity of our proof,
but a prerequisite for undecidability.

* Corresponding author.
E-mail address: sven.schewe@liverpool.ac.uk (S. Schewe).
1 The only other natural weak class of properties is safety, but optimal control for safety specifications can be obtained by simply blocking all actions
that can be blocked.

http://dx.doi.org/10.1016/j.tcs.2015.07.044
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.07.044
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:sven.schewe@liverpool.ac.uk
http://dx.doi.org/10.1016/j.tcs.2015.07.044
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.07.044&domain=pdf

A. Muscholl, S. Schewe / Theoretical Computer Science 611 (2016) 136-141 137
2. Preliminaries
2.1. Zielonka automata

Zielonka automata are simple distributed devices. Such an automaton is a parallel composition of several finite automata,
called processes, that synchronise on shared actions. There is no global clock, and two processes can therefore perform a
different number of actions between two shared actions. Because of this, Zielonka automata are also called asynchronous
automata.

A distributed action alphabet on a finite set P of processes is a pair (X, dom), where ¥ is a finite set of actions and
dom: = — 2P\ @) is a location function. The location dom(a) of action a € £ comprises all processes that need to synchronise
in order to perform this action. Actions from X, = {a € X | p € dom(a)} are called p-actions, they involve process p. If
|dom(a)| =1 then a is a local action, otherwise it is a synchronisation action.

A (deterministic) Zielonka automaton is a tuple A= ({Sp}pep, Sin, {8a}aex) that contains

o for every process p a finite set S, of (local) states,
o the initial state s;j, € HPEP Sp, and

e for every action a € ¥ a partial transition function 8q : [[pegom() Sp - [Ipcdom@ Sp on tuples of states of processes in
dom(a).

For convenience, we abbreviate a tuple (sp)pep of local states by sp, where P C P. We refer to S, as the set of p-states and
to [[,cp Sp as global states.

A loosely cooperating automaton (abbreviated as LCA) is a Zielonka automaton where each transition function §, is a
product of local transition functions 8y : Sp x Xp = Sp. Formally, it is a tuple of finite-state automata A = (Ap)pep, Ap =
(Sp, Xp, 8p, (Sin)p). It corresponds to a Zielonka automaton by setting

8a(Sdom(@)) = sijom(a) iff Sp(sp,a)= s;, , for every p € dom(a).

Thus, the difference between LCA and usual Zielonka automata is that, in an LCA, processes executing a shared action do
not obtain any information about each other, except for the execution itself.
A Zielonka automaton can be viewed as an ordinary finite-state automaton with states S =[], cp Sp, initial state s, and

transitions A = {sp —> Sp | (Sdom(@)+ Syom(a)) € Sar AN SP\dom(@) = S gom(a))+ A TUN is a sequence s aq, s@ ay, ..., s™ .,

with s® e S and a; € T, which satisfies s —%s s(+1 for all i. An action a is enabled in a state s € S if A(s,a) is defined.

The finitary language L(A) of this sequential automaton consists of the labellings of runs that start in the initial state
and end in a final state, i.e., a state from some designated set F C S.

The location mapping dom defines an independence relation I in a natural way. Two actions a,b € X are independent,
denoted (a, b) € I, if they involve different processes, that is, if dom(a) N dom(b) = ¢. Note that the order of execution of
two independent actions (a,b) € I in a Zielonka automaton is irrelevant: they can be executed as a,b, or b,a - or even
concurrently. More generally, we can consider the congruence ~; on X* generated by I, and observe that, whenever u ~; v,
the same global state is reached from the initial state on u and v. Hence, u € L(A) if, and only if, v € L(A).

The idea to describe concurrency by an independence relation was introduced by Mazurkiewicz [6] and Keller [5] in the
late seventies. (See also [2].) An equivalence class [w]; induced by ~; is called a Mazurkiewicz trace. It can also be viewed
as a labelled partially ordered multiset (pomset) of a special kind. As we have observed, L(A) is a sum of such equivalence
classes. In other words it is trace-closed (w.r.t. (X, dom)).

Zielonka's theorem below says that every finite-state automaton whose language is trace-closed, can be turned into
an equivalent Zielonka automaton. Zielonka automata are therefore a suitable model for the simple view of concurrency
captured by Mazurkiewicz traces.

Theorem 2.1. (See [13,4].) Let dom : & — (27 \ {#}) be a distribution of actions. If a language L C =* is regular and trace-closed
w.r.t. (X, dom) then there is a deterministic Zielonka automaton accepting L of size exponential in the number of processes and poly-
nomial in the size of the minimal automaton for L.

Remark 2.2. Given a finite-automaton A with L(.A) trace-closed, it is not always possible to construct a loosely cooperating
equivalent automaton. If the acceptance is defined by global final states, the question whether such an equivalent automaton
exists, is open (see [1] for some partial results). But if the acceptance is given by sets F, € S, of local final states (thus
F =]_[pEP Fp) then it suffices to test whether A is equivalent to the LCA B = (Bp),cp, where B), accepts the projection of
L(A) on Xp [13,9].

Download English Version:

https://daneshyari.com/en/article/433721

Download Persian Version:

https://daneshyari.com/article/433721

Daneshyari.com

https://daneshyari.com/en/article/433721
https://daneshyari.com/article/433721
https://daneshyari.com

