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In this article, we consider the problem of controlling loosely cooperating processes. We 
show that this distributed control problem is EXPTIME-complete if we restrict the number 
of processes to two, and undecidable for three or more processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Asynchronous processes that synchronise on shared actions [6,5,2] are a popular model for distributed systems. In this 
article, we discuss the control problem for such processes [11]. The control problem is to check whether or not each 
process has a local controller that restricts the set of runs by disabling some controllable actions in such a way that all joint 
behaviours satisfy a given local property on each process.

When studying the control problem, a major design decision is the knowledge the processes have about each other. We 
study loosely cooperating processes [13]. Loosely cooperating processes, and hence their local controllers, obtain no additional 
knowledge by performing shared actions with other processes. All they know about other processes is what they can infer 
from their local history, in particular the history of their cooperation with other processes. Synthesis of loosely cooperating 
processes (or synchronised products of transition systems) from regular specifications has a simple solution for local acceptance 
conditions [13,9] and is an open problem if the acceptance is global (see [1] for partial results).

We show that the control problem for loosely cooperating processes is undecidable even for local reachability1 properties. 
The proof is related to the undecidability of distributed control in the Pnueli and Rosner framework [10,3] with local 
specifications [7] and the synthesis problem for asynchronous distributed systems [12].

While these undecidability proofs [10,3,7,12] require only two processes, our undecidability proof uses three processes. 
This raises the question whether the third process is necessary, and we show that it is: we establish that local control is 
decidable (and EXPTIME-complete) in the two process case. The third process is therefore not a particularity of our proof, 
but a prerequisite for undecidability.

* Corresponding author.
E-mail address: sven.schewe@liverpool.ac.uk (S. Schewe).

1 The only other natural weak class of properties is safety, but optimal control for safety specifications can be obtained by simply blocking all actions 
that can be blocked.
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2. Preliminaries

2.1. Zielonka automata

Zielonka automata are simple distributed devices. Such an automaton is a parallel composition of several finite automata, 
called processes, that synchronise on shared actions. There is no global clock, and two processes can therefore perform a 
different number of actions between two shared actions. Because of this, Zielonka automata are also called asynchronous 
automata.

A distributed action alphabet on a finite set P of processes is a pair (�, dom), where � is a finite set of actions and 
dom : � → (2P\∅) is a location function. The location dom(a) of action a ∈ � comprises all processes that need to synchronise 
in order to perform this action. Actions from �p = {a ∈ � | p ∈ dom(a)} are called p-actions, they involve process p. If 
|dom(a)| = 1 then a is a local action, otherwise it is a synchronisation action.

A (deterministic) Zielonka automaton is a tuple A = 〈{S p}p∈P, sin, {δa}a∈�〉 that contains

• for every process p a finite set S p of (local) states,
• the initial state sin ∈ ∏

p∈P S p , and

• for every action a ∈ � a partial transition function δa : ∏p∈dom(a) S p
·→ ∏

p∈dom(a) S p on tuples of states of processes in 
dom(a).

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP , where P ⊆ P. We refer to S p as the set of p-states and 
to 

∏
p∈P S p as global states.

A loosely cooperating automaton (abbreviated as LCA) is a Zielonka automaton where each transition function δa is a 
product of local transition functions δp : S p × �p

·→ S p . Formally, it is a tuple of finite-state automata A = (Ap)p∈P , Ap =
〈S p, �p, δp, (sin)p〉. It corresponds to a Zielonka automaton by setting

δa(sdom(a)) = s′
dom(a) iff δp(sp,a) = s′

p , for every p ∈ dom(a) .

Thus, the difference between LCA and usual Zielonka automata is that, in an LCA, processes executing a shared action do 
not obtain any information about each other, except for the execution itself.

A Zielonka automaton can be viewed as an ordinary finite-state automaton with states S = ∏
p∈P S p , initial state sin , and 

transitions � = {sP
a−→ s′

P
| (sdom(a), s′

dom(a)
) ∈ δa , and sP\dom(a) = s′

P\dom(a)
}. A run is a sequence s(1), a1, s(2), a2, . . . , s(n), . . . , 

with s(i) ∈ S and ai ∈ �, which satisfies s(i) ai−→ s(i+1) for all i. An action a is enabled in a state s ∈ S if �(s, a) is defined.
The finitary language L(A) of this sequential automaton consists of the labellings of runs that start in the initial state 

and end in a final state, i.e., a state from some designated set F ⊆ S .
The location mapping dom defines an independence relation I in a natural way. Two actions a, b ∈ � are independent, 

denoted (a, b) ∈ I , if they involve different processes, that is, if dom(a) ∩ dom(b) = ∅. Note that the order of execution of 
two independent actions (a, b) ∈ I in a Zielonka automaton is irrelevant: they can be executed as a, b, or b, a – or even 
concurrently. More generally, we can consider the congruence ∼I on �∗ generated by I , and observe that, whenever u ∼I v , 
the same global state is reached from the initial state on u and v . Hence, u ∈ L(A) if, and only if, v ∈ L(A).

The idea to describe concurrency by an independence relation was introduced by Mazurkiewicz [6] and Keller [5] in the 
late seventies. (See also [2].) An equivalence class [w]I induced by ∼I is called a Mazurkiewicz trace. It can also be viewed 
as a labelled partially ordered multiset (pomset) of a special kind. As we have observed, L(A) is a sum of such equivalence 
classes. In other words it is trace-closed (w.r.t. (�, dom)).

Zielonka’s theorem below says that every finite-state automaton whose language is trace-closed, can be turned into 
an equivalent Zielonka automaton. Zielonka automata are therefore a suitable model for the simple view of concurrency 
captured by Mazurkiewicz traces.

Theorem 2.1. (See [13,4].) Let dom : � → (2P \ {∅}) be a distribution of actions. If a language L ⊆ �∗ is regular and trace-closed 
w.r.t. (�, dom) then there is a deterministic Zielonka automaton accepting L of size exponential in the number of processes and poly-
nomial in the size of the minimal automaton for L.

Remark 2.2. Given a finite-automaton A with L(A) trace-closed, it is not always possible to construct a loosely cooperating 
equivalent automaton. If the acceptance is defined by global final states, the question whether such an equivalent automaton 
exists, is open (see [1] for some partial results). But if the acceptance is given by sets F p ⊆ S p of local final states (thus 
F = ∏

p∈P F p) then it suffices to test whether A is equivalent to the LCA B = (Bp)p∈P , where Bp accepts the projection of 
L(A) on �p [13,9].
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