
Science of Computer Programming 96 (2014) 191–210

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

The formalization and implementation of Adaptable Parsing
Expression Grammars

Leonardo V.S. Reis a,∗, Roberto S. Bigonha b, Vladimir O. Di Iorio c,
Luis Eduardo S. Amorim c

a Departamento de Computação e Sistemas, Universidade Federal de Ouro Preto, Brazil
b Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brazil
c Departamento de Informática, Universidade Federal de Viçosa, Brazil

h i g h l i g h t s

• We propose an adaptable model based on Parsing Expression Grammars.
• We added attributes to PEG so extensibility is achieved by means of grammar attributes.
• The model is formally defined.
• The implementation of the adaptable model is detailed.
• The adaptable model preserves PEG legibility.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 March 2013
Received in revised form 8 February 2014
Accepted 21 February 2014
Available online 27 February 2014

Keywords:
Extensible languages
Adaptable grammars
PEG

The term “extensible language” is especially used when a language allows the extension
of its own concrete syntax and the definition of the semantics of new constructs.
Most popular tools designed for automatic generation of syntactic analysers do not offer
any adequate resources for the specification of extensible languages. When used in the
implementation of features like syntax macro definitions, these tools usually impose severe
restrictions. For example, it may be required that macro definitions and their use reside in
different files; or it may be impossible to perform the syntax analysis in one single pass.
We claim that one of the main reasons for these limitations is the lack of appropriate
formal models for the definition of the syntax of extensible languages.
This paper presents the design and formal definition of Adaptable Parsing Expression
Grammars, an extension to the Parsing Expression Grammar (PEG) model that allows
the manipulation of its own production rules during the analysis of an input string.
The proposed model compares favourably with similar approaches for the definition of
the syntax of extensible languages. An implementation of the model is also presented,
simulating the behaviour of packrat parsers. Among the challenges for this implementation
is the use of attributes and on the fly modifications on the production rules at parse time,
features not present in standard PEG. This approach has been used on the definition of a
real extensible language, and initial performance tests suggest that the model may work
well in practice.

© 2014 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: leo@decsi.ufop.br (L.V.S. Reis), bigonha@dcc.ufmg.br (R.S. Bigonha), vladimir@dpi.ufv.br (V.O. Di Iorio), luis.amorim@ufv.br

(L.E.S. Amorim).

http://dx.doi.org/10.1016/j.scico.2014.02.020
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.02.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:leo@decsi.ufop.br
mailto:bigonha@dcc.ufmg.br
mailto:vladimir@dpi.ufv.br
mailto:luis.amorim@ufv.br
http://dx.doi.org/10.1016/j.scico.2014.02.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.02.020&domain=pdf


192 L.V.S. Reis et al. / Science of Computer Programming 96 (2014) 191–210

1 grammar ForLoop extends{Expression,Identifier}
2 Expr |:=
3 for {i:Id ← e:Expr,? Space}* do block:Expr end
4 ⇒ // ... define a transformation to pure Fortress code
5 end
6
7 ...
8
9 // Using the new construct

10 g1 = < 1,2,3,4,5 >

11 g2 = < 6,7,8,9,10 >

12 for i ← g1, j ← g2 do
13 println ‘‘(’’ i ‘‘,’’ j ‘‘)’’
14 end

Fig. 1. A Fortress program with a syntax macro.

1. Introduction

In recent years, we have witnessed important advances in parsing theory. For example, Ford created Parsing Expression
Grammars (PEG) [1], an alternative to Context Free Grammars for describing syntax, and packrat parsers [2], top-down
parsers with backtracking that allow unlimited lookahead and a linear parse time. Parr has devised a new parsing strategy
called LL(*) for the ANTLR tool, which allows arbitrary lookahead and recognizes some context-sensitive languages [3]. Visser
proposed SGLR [4,5], combining scannerless parsing with generalized LR parsing, and addressing important issues related to
extensibility and compositionality of parsers. New engines have been created, such as YAKKER [6], which allows the control
of the parsing process by arbitrary constraints, using variables bound to intermediate parsing results. All the advances listed
above, however, do not include important features for the definition of extensible languages, especially when extensibility
may be considered at parse time.

As a simple example of desirable features for the implementation of extensible languages, Fig. 1 shows an excerpt from
a program written in the Fortress language [7]. Initially, a new syntax for loops is defined, and then this syntax is used in
the same program. In details, line 1 introduces the definition of ForLoops as an extension of Expression and Identifier. Line 2
says that the grammatical rule that defines Expr is to be extended with the new right hand side defined on line 3. The
new alternative, defined in line 3, begins with a terminal symbol for, followed by a symbol group, another terminal do,
a nonterminal Expr and a terminal end. The names i, e and block are only aliases to the nonterminal, which may be used in
the transformation part, not showed in Fig. 1. The expression between the symbols { and } is a sequence of zero or more
patterns of the form Id ← Expr with an optional comma and a required white space (nonterminal Space) at the end. The
lines 12 to 14 show a use of this new syntax.

Standard tools for the definition of the syntax of programming languages are not well suited for this type of extension,
because the syntax of the language is modified while the program is processed. The Fortress interpreter, written with the
tool Rats! [8], uses the following method: it collects only the macro (extension) definitions in a first pass, processes the
necessary modifications to the grammar, and then parses the rest of the program in a second pass [9]. A tool that is able to
parse the program in Fig. 1 in one pass must be based on a model that allows syntax extensions.

Our concern is the lack of tools for helping the definition and implementation of extensible languages, such as Fortress.
Our goal is to provide a solution for this problem, which may be used in practice. We propose Adaptable Parsing Expression
Grammars (APEG), a model that combines the ideas of Extended Attribute Grammars, Adaptable Grammars and Parsing Expression
Grammars. The main goals that the model has to achieve are:

• to offer facilities for adapting the grammar during the parsing process, without adding too much complexity to the base
model (in this case, PEG);

• to allow an implementation with reasonable efficiency.

Satisfying the first requirement, the model may be considered a viable formal approach to describe the syntax of extensible
languages. An efficient implementation allows automatic generation of parsers that may be used in practice.

1.1. From Context-Free to Adaptable Grammars

Context Free Grammars (CFGs) are a formalism widely used for the description of the syntax of programming languages,
but not powerful enough to describe context dependent aspects of any interesting programming language, let alone lan-
guages with extensible syntax. In order to deal with context dependency, several augmentations to the CFG model have
been proposed, and the most commonly used are variations on Attribute Grammars (AGs) [10]. First introduced by Knuth
to assign semantics to context-free languages, AGs have subsequently been used for several other purposes, such as the
specification of static semantics of programming languages [11,12].

Authors like Christiansen [13] and Shutt [14] argue that, in AG and other extensions for CFGs, the clarity of the original
base CFG model is undermined by the power of the extending facilities. Christiansen gives as an example an attribute



Download English Version:

https://daneshyari.com/en/article/433724

Download Persian Version:

https://daneshyari.com/article/433724

Daneshyari.com

https://daneshyari.com/en/article/433724
https://daneshyari.com/article/433724
https://daneshyari.com

