
Science of Computer Programming 96 (2014) 230–253

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A quantitative and qualitative assessment of aspectual feature
modules for evolving software product lines

Felipe Nunes Gaia a,∗, Gabriel Coutinho Sousa Ferreira a,∗,
Eduardo Figueiredo b,∗, Marcelo de Almeida Maia a,∗
a Federal University of Uberlândia, Brazil
b Federal University of Minas Gerais, Brazil

h i g h l i g h t s

• Variability mechanisms are systematically evaluated in the evolution of SPLs.
• FOP and AFM have shown better adherence to the Open-Closed Principle than CC.
• When crosscutting concerns are present, AFM are recommended over FOP.
• Refactoring at component level has important impact in AFM and FOP.
• CC compilation should be avoided when modular design is an important requirement.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2013
Received in revised form 28 February 2014
Accepted 10 March 2014
Available online 31 March 2014

Keywords:
Software product lines
Feature-oriented programming
Aspect-oriented programming
Aspectual feature modules
Variability mechanisms

Feature-Oriented Programming (FOP) and Aspect-Oriented Programming (AOP) are
programming techniques based on composition mechanisms, called refinements and
aspects, respectively. These techniques are assumed to be good variability mechanisms
for implementing Software Product Lines (SPLs). Aspectual Feature Modules (AFM) is an
approach that combines advantages of feature modules and aspects to increase concern
modularity. Some guidelines on how to integrate these techniques have been established
in some studies, but these studies do not focus the analysis on how effectively AFM can
preserve the modularity and stability facilitating SPL evolution. The main purpose of this
paper is to investigate whether the simultaneous use of aspects and features through
the AFM approach facilitates the evolution of SPLs. The quantitative data were collected
from two SPLs developed using four different variability mechanisms: (1) feature modules,
aspects and aspects refinements of AFM, (2) aspects of aspect-oriented programming
(AOP), (3) feature modules of feature-oriented programming (FOP), and (4) conditional
compilation (CC) with object-oriented programming. Metrics for change propagation and
modularity were calculated and the results support the benefits of the AFM option
in a context where the product line has been evolved with addition or modification
of crosscutting concerns. However a drawback of this approach is that refactoring
components’ design requires a higher degree of modifications to the SPL structure.

© 2014 Elsevier B.V. All rights reserved.

* Corresponding authors.
E-mail addresses: felipegaia@mestrado.ufu.br (F.N. Gaia), gabriel@mestrado.ufu.br (G.C.S. Ferreira), figueiredo@dcc.ufmg.br (E. Figueiredo),

marcmaia@facom.ufu.br (M.A. Maia).

http://dx.doi.org/10.1016/j.scico.2014.03.006
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.03.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:felipegaia@mestrado.ufu.br
mailto:gabriel@mestrado.ufu.br
mailto:figueiredo@dcc.ufmg.br
mailto:marcmaia@facom.ufu.br
http://dx.doi.org/10.1016/j.scico.2014.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.03.006&domain=pdf


F.N. Gaia et al. / Science of Computer Programming 96 (2014) 230–253 231

1. Introduction

Software Product Lines (SPLs) refer to an emerging engineering technique that aims to provide the systematic reuse of
common core and shared modules in several software products [12]. Optional features define points of variability and their
role is to permit the differentiation of products in a specific software product line (SPL). SPLs products share the same
application domain and have points of variability among them. The adoption of SPLs presents as potential benefits the
increased product’s quality and development productivity, which are achieved through the systematic reuse of features in
different products [12].

During an SPL life cycle, change requests are not only inevitable, but also highly frequent [22] since they target several
different products. These change requests must be accommodated since they include demands from multiple stakehold-
ers [16].

Variability mechanisms play a crucial role when considering evolving SPLs. They must guarantee the architecture stability
and, at the same time, facilitate future changes in the SPL. Therefore, variability mechanisms should not degenerate modu-
larity and should minimize the need of future changes. Ideally, all evolutionary tasks in an SPL should be conducted through
non-intrusive and self-contained changes that favor insertions and do not require deep modifications into existing compo-
nents. The inefficacy of variability mechanisms to accommodate changes might lead to several undesirable consequences
related to the product line stability, including invasive wide changes, significant ripple effects, artificial dependencies be-
tween core and optional features, and the lack of independence of optional code [17,32].

In our previous study [15], we analyzed and compared variability mechanisms to evolve SPLs, using FOP, Design Patterns
and Conditional Compilation. The evaluation was also based on change propagation measures and modularity metrics. In
that work, the result was mostly favorable for FOP mechanism. It is important to consider that crosscutting concerns were
not considered in the subject system analyzed in that study. This work has as main goal the better understanding of how
contemporary variability mechanisms contribute to the mentioned SPLs evolution practices. To this aim, this paper presents
two case studies that evaluate comparatively four mechanisms for implementing variability during the evolution of product
lines: conditional compilation (CC), feature-oriented programming (FOP), aspect-oriented programming (AOP), and aspectual
feature modules (AFM). This work is an extension of a previous work [19], which was carried out only with one SPL,
called WebStore. In this work, we include five releases of another SPL called MobileMedia [17,45]. This SPL is larger than
WebStore not only in terms of number of components but also with respect to the variety of change scenarios. Therefore,
this new case study helped us to (i) increase the results reliability, (ii) come up with new findings, and (iii) reduce threats to
study validity. Moreover, we extended significantly the amount of data, providing quantitative and qualitative analysis of the
measured data in greater depth. The quantitative analysis refers to interpretation of collected measures related to stability
and modularity. The analysis of stability considers measures of change impact [45], while the analysis of modularity relies
on Separation of Concern metrics [39]. The qualitative analysis is concerned with the interpretation and reasoning of the
possible factors that influenced the quantitative results.

The analysis presents novel results that support the benefits of choosing between AFM and FOP when an SPL has many
optional features. In this case, class refinements adhere more closely to the Open-Closed principle [33]. In addition, these
mechanisms cope well for features with no shared code and facilitate the instantiation of different products. However, FOP
is not suitable for crosscutting concerns and design refactoring with AFM causes a higher number of modifications in SPL
components. The results also demonstrate that CC may not be appropriate in SPL evolution context when modularity of
features is an important concern. For example, the inclusion of new features usually increases tangling and scattering of
others features.

In Section 2, the implementation mechanisms used in the case study are presented. Section 3 describes the study
settings, including the target SPL and change scenarios. Section 4 analyzes changes made in the WebStore and Mobile-
Media SPLs and how they propagate through its releases. Section 5 analyzes the modularity of both SPLs with specific
concern-related metrics. Section 6 provides an overall discussion of results. Section 7 presents some limitations of this
work. Section 8 presents related work and points out directions for future work. Finally, Section 9 concludes this paper.

2. Variability mechanisms

This section presents some concepts about the four techniques evaluated in the study: conditional compilation (CC),
feature-oriented programming (FOP), aspect-oriented programming (AOP), and aspectual feature modules (AFM). Our main
goal is to compare the different composition mechanisms available to understand their distinct strengths and weaknesses.
Although CC is not a new variability mechanism, we decided to include it in this study because it is still a state-of-the-
practice option adopted in SPL industry, and can serve as a fair baseline for comparison [1,41,6].

2.1. Conditional compilation

The Conditional Compilation (CC) approach studied in this work is a well-known annotation-based technique for handling
software variability [1,4,25]. It has been used in programming languages like C for decades and it is also available in
object-oriented languages such as Java. Basically, the preprocessor directives indicate pieces of code that should be compiled
or not, based on the value of preprocessor variables. The major advantage of this approach is that the code can be marked
at different granularities, from a single line of code to a whole file.



Download English Version:

https://daneshyari.com/en/article/433726

Download Persian Version:

https://daneshyari.com/article/433726

Daneshyari.com

https://daneshyari.com/en/article/433726
https://daneshyari.com/article/433726
https://daneshyari.com

