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In the classical pattern-matching problem, one is given a text and a pattern both of which 
are sequences of letters. The requirement is to find all occurrences of the pattern in the 
text. We studied two modifications of the classical problem, where each letter in the text 
and pattern is a set (Set Intersection Matching problem) or a sequence (Sequence Matching
problem). Two “letters” are found to match if the intersection of the corresponding sets 
is not empty or if the two sequences have a common element in the same index. 
We first show that the two problems are similar by establishing a linear time reduction 
between them. We then show the first known non-trivial and efficient algorithms for 
these problems, when the maximum set/sequence size d is small. The first is a Monte 
Carlo randomized algorithm for Set Intersection Matching, that takes � 

(
4dn log n log m

)
time, 

where n and m are the lengths of the text and the pattern, respectively; the failure 
probability is less than 1

n2 . This algorithm can also be used, with slight modifications, when 
up to k mismatches is allowed. In addition, it can be used to maintain an approximation 
of factor 1 ± ε of the mismatch count in � 

(
1
ε2 4dn log n log m

)
time; the failure probability 

is bounded by 1
n . The second is a deterministic algorithm for Set Intersection Matching that 

can be used to count the number of matches at each index of the text in a total running 
time � 

(∑d
i=1

(σ
i

)
n log m

)
= O  

(
σ dn log m

)
, where σ is the size of the alphabet. The third 

algorithm, also deterministic, solves the Sequence Matching problem in � 
(
4dn log m

)
time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and related work

The classic pattern matching problem is defined as follows: We are given a text T = t0, t1, t2, . . . , tn−1 of size n and a 
pattern P = p0, p1, p2, . . . , pm−1 of size m — both are sequences of letters belonging to a pre-defined set, i.e., the alphabet 
� of size σ . We are required to find all occurrences of the pattern in the text. Linear time solutions were given in [10,7].

Two forms of approximation for the problem that are commonly researched involve don’t cares and mismatch count. 
The first is the presence of a wildcard letter that matches any other letter. One of the main approaches for solving that 
problem, that was first introduced by Fischer and Paterson, is to use convolutions. They showed how the problem can be 
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solved in � (n log m logσ) time [4]. Since then many algorithms [11–14] showed how different string matching problems 
can be solved efficiently by using FFT. Faster algorithms for the string matching with wildcards were presented later, and 
the time was reduced to � (n logm) [9,8]. The second form of approximation is match/mismatch count, e.g. the number 
of matching letters when comparing the pattern to the text at location i for all locations. This mismatch count, at each 
location compared, is also known as the Hamming distance between the text and the pattern at this location. A well known 
algorithm for finding the hamming in � (nσ log m) time was given in [4].

The subset matching problem was first introduced by Cole and Hariharan [1]. It extends the classic string-matching 
problem and defines both the pattern and text to be sequences of sets of characters. Formally, each text location ti and 
each pattern location pi is a set of characters, not a single character, taken from a certain alphabet. Pattern P is said to 
match text T at location i, if p j ⊆ ti+ j for all j, 0 ≤ j < m. Cole and Hariharan proposed a near-linear time randomized 
algorithm [1] and improved it [2] to a deterministic one. Amihood, Porat and Lewenstein proposed an approximate version 
with don’t cares [3].

Generalized strings are another extensions of the classical string-matching problem. Assuming the alphabet is �, Gener-
alized strings are sequences of sets, where each set is a subset of � that are possibilities for letters in that position. For 
example, the generalized string [{a,b}, {b,d}] matches the strings ab, ad, bb, and bd. This type of string is used in [6] and 
while specifying the pattern to look for regular expressions.

As in the subset matching and Generalized strings problems, the two problems studied in this paper define the pattern 
and the text to be sequences of sets (or sequences). But here, a match between two ‘letters’ is when either the intersection 
of the two sets is not empty, as in the Set Intersection Matching problem, or when the two sequences have a common 
element in the same place, as in the Sequence Matching problem. In the former, a search is conducted to find one generalized 
string inside another. Assuming the maximum set (or sequence) size is d, it is trivial that these problems can be easily 
solved in � 

(
nmd2

)
and � (nmd) time, respectively.

Sample applications for the algorithms in this paper occur when there are possible errors in both the pattern and 
the text. For example, consider the case when both the pattern and the text were acquired using an Optical Charac-
ter Recognition (OCR) algorithm that reports few options for each letter. One can create a set of all possible letters for 
each such letter and then run a Set Intersection Matching algorithm to get the occurrences of such faulty patterns in the 
text.

1.1. Our contribution

The difficulty in both problems lies in the lack of the transitive property, which is the base for fast pattern-matching 
algorithms. The transitive relation states that if a = b and b = c, then a = c. This is utilized by classical pattern-matching 
algorithms to avoid comparing elements in which matching could be concluded. Because this property does not hold in the 
Set Intersection Matching and Sequence Matching problems, the existing algorithms cannot be used.

In this paper, we show the first known non-trivial and efficient algorithms for these problems when the maximum 
set/sequence size d is small. First, we show a Monte Carlo algorithm for Set Intersection Matching that takes � 

(
4dn log n log m

)
time. It has a failure probability less than 1

n2 . This algorithm can be used to maintain an approximation of factor 1 ± ε of 

the mismatch count in � 
(

1
ε2 4dn log n log m

)
time. The failure probability is bounded by 1

n . It improves upon the trivial 

solution where d − 2 log d < log m − log log n − log log m. Assuming log n = o(m), it improves for d < 1
2 log m. Next, we present 

a deterministic algorithm for Set Intersection Matching, that can be used to count the number of matches at each index of the 
text in a total running time � 

(∑d
i=1

(σ
i

)
n log m

)
= O  

(
σ dn log m

)
. This algorithm improves upon the trivial solution where 

d < log m
log σ . Finally, a � 

(
4dn log m

)
time deterministic algorithm for the Sequence Matching problem is given, which improves 

upon the trivial algorithm for d < 1
2 log m.

1.2. Overview and comparison

The structure of this paper is as follows. Section 2 formally defines each of the two problems. Sections 3 and 4 present 
three algorithms for the problems.

The two algorithms presented in Section 3 are for the Set Intersection Matching problem, and both can be used for 
determining the mismatch count. The first is randomized, approximates the mismatch count with high probability, and is 
more suitable for cases where the size of the alphabet σ is large, whereas the second is deterministic and gives the exact 
mismatch count but is less efficient when σ is large. The algorithm given in Section 4 is for the Sequence Matching problem, 
it is deterministic, and efficient for a large alphabet σ , but cannot be used to determine the mismatch count.

2. Preliminary

In the Set Intersection Matching problem, each pattern and text location is a set, and two locations match if the intersec-
tion between the sets is not empty. More formally:
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