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The longest common extension (LCE) of two indices in a string is the length of the longest 
identical substrings starting at these two indices. The LCE problem asks to preprocess a 
string into a compact data structure that supports fast LCE queries.
In this paper we generalize the LCE problem to trees and suggest a few applications of LCE 
in trees to tries and XML databases. Given a labeled and rooted tree T of size n, the goal 
is to preprocess T into a compact data structure that support the following LCE queries 
between subpaths and subtrees in T . Let v1, v2, w1, and w2 be nodes of T such that w1
and w2 are descendants of v1 and v2 respectively.

• LCEPP(v1, w1, v2, w2): (path–path LCE) return the longest common prefix of the paths 
v1 � w1 and v2 � w2.

• LCEPT(v1, w1, v2): (path–tree LCE) return maximal path–path LCE of the path v1 � w1
and any path from v2 to a descendant leaf.

• LCETT(v1, v2): (tree–tree LCE) return a maximal path–path LCE of any pair of paths 
from v1 and v2 to descendant leaves.

We present the first non-trivial bounds for supporting these queries. For LCEPP queries, we 
present a linear-space solution with O (log∗ n) query time. For LCEPT queries, we present 
a linear-space solution with O ((log logn)2) query time, and complement this with a lower 
bound showing that any path–tree LCE structure of size O (n polylog(n)) must necessarily 
use �(log logn) time to answer queries. For LCETT queries, we present a time-space trade-
off, that given any parameter τ , 1 ≤ τ ≤ n, leads to an O (nτ ) space and O (n/τ ) query-time 
solution (all of these bounds hold on a standard unit-cost RAM model with logarithmic 
word size). This is complemented with a reduction from the set intersection problem 
implying that a fast linear space solution is not likely to exist.

© 2015 Elsevier B.V. All rights reserved.

✩ A preliminary version of this paper appeared in the Proceedings of the 26th Annual symposium on Combinatorial Pattern Matching, 2015.
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Fig. 1. LCE in trees. LCEPP(v1, w1, v2, w2) is the path “ab”, LCEPT (v1, w1, v2) is the path “abc”, and LCETT (v1, v2) is the path “acad”.

1. Introduction

Given a string S , the longest common extension (LCE) of two indices is the length of the longest identical substring start-
ing at these indices. The longest common extension problem (LCE problem) is to preprocess S into a compact data structure 
supporting fast LCE queries. The LCE problem is a well-studied basic primitive [12,26,13,11,18] with a wide range of ap-
plications in problems such as approximate string matching, finding exact and approximate tandem repeats, and finding 
palindromes [5,16,30,32,24,29,28,31]. The classic textbook solution to the LCE problem on strings combines a suffix tree 
with a nearest common ancestor (NCA) data structure leading to a linear space and constant query-time solution [23].

In this paper we study generalizations of the LCE problem to trees. The goal is to preprocess an edge-labeled, rooted 
tree T to support the various LCE queries between paths in T . Here a path starts at a node v and ends at a descendant of 
v , and the LCEs are on the strings obtained by concatenating the characters on the edges of the path from top to bottom 
(each edge contains a single character). We consider path–path LCE queries between two specified paths in T , path–tree 
LCE queries defined as the maximal path–path LCE of a given path and any path starting at a given node, and tree–tree LCE 
queries defined as the maximal path–path LCE between any pair of paths starting from two given nodes. We next define 
these problems formally.

Tree LCE problems Let T be an edge-labeled, rooted tree with n nodes. We denote the subtree rooted at a node v by T (v), 
and given nodes v and w such that w is in T (v) the path going down from v to w is denoted v � w . A path prefix of 
v � w is any subpath v � u such that u is on the path v � w . Two paths v1 � w1 and v2 � w2 match if concatenating 
the labels of all edges in the paths gives the same string. Given nodes v1, w1 such that w1 ∈ T (v1) and nodes v2, w2 such 
that w2 ∈ T (v2) define the following queries:

• LCEPP(v1, w1, v2, w2): (path–path LCE) return the longest common matching prefix of the paths v1 � w1 and v2 � w2.
• LCEPT(v1, w1, v2): (path–tree LCE) return the maximal path–path LCE of the path v1 � w1 and any path from v2 to a 

descendant leaf.
• LCETT(v1, v2): (tree–tree LCE) return a maximal path–path LCE of any pair of paths from v1 and v2 to descendant 

leaves.

The queries are illustrated in Fig. 1. We assume that the output of the queries is reported compactly as the endpoint(s) of 
the LCE. This allows us to report the shared path in constant time. Furthermore, we will assume w.l.o.g. that for each node 
v in T , all the edge-labels to children of v are distinct. If this is not the case, then we can merge all identical edges of a 
node to its children in linear time, without affecting the result of all the above LCE queries.

We note that the direction of the paths in T is important for the LCE queries. In the above LCE queries, the paths start 
from a node and go downwards. If we instead consider paths from a node going upwards towards the root of T , the problem 
is easier and can be solved in linear space and constant query-time by combining Breslauer’s suffix tree of a tree [14] with 
a nearest common ancestor (NCA) data structure [25].

Our results First consider the LCEPP and LCEPT problems. To answer an LCEPP(v1, w1, v2, w2) query, a straightforward solu-
tion is to traverse both paths in parallel-top down. Similarly, to answer an LCEPT(v1, w1, v2) query we can traverse v1 � w1
top-down while traversing the matching path from v2 (recall that all edges to a child are distinct and hence the longest 
matching path is unique). This approach leads to a linear-space solution with O (h) query-time to both problems, where h
is the height of T . Note that for worst-case trees we have that h = �(n).
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