Reporting consecutive substring occurrences under bounded gap constraints ${ }^{\text {T}}$

Gonzalo Navarro ${ }^{\text {a,1 }}$, Sharma V. Thankachan ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile
${ }^{\mathrm{b}}$ School of Computational Science and Engineering, Georgia Institute of Technology, USA

ARTICLE INFO

Article history:

Received 31 March 2015
Received in revised form 14 October 2015
Accepted 5 February 2016
Available online 9 February 2016

Keywords:

Suffix trees
Geometric data structures
Heavy-path decomposition
Pattern matching

Abstract

We study the problem of indexing a text $T[1 \ldots n]$ such that whenever a pattern $P[1 \ldots p]$ and an interval $[\alpha, \beta]$ come as a query, we can report all pairs (i, j) of consecutive occurrences of P in T with $\alpha \leq j-i \leq \beta$. We present an $O(n \log n)$ space data structure with optimal $O(p+k)$ query time, where k is the output size.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Detecting close occurrences of patterns in a text is a problem that has been considered in various flavors. For example, Iliopoulos and Rahman [6] consider the problem of finding all the k occurrences of two patterns P_{1} and P_{2} (of total length p) separated by a fixed distance α known at indexing time. They gave a data structure using $O\left(n \log ^{\epsilon} n\right)$ space and query time $O(p+\log \log n+k)$, for any constant $\epsilon>0$. Bille and Gørtz [2] retained the same space and improved the time to the optimal $O(p+k) .^{2}$ The problem becomes, however, much messier when we allow the distance between P_{1} and P_{2} to be in a range $[\alpha, \beta]$, even if these are still known at indexing time. Bille et al. [3] obtained various tradeoffs, for example $O(n)$ space and $O\left(p+\sigma^{\beta} \log \log n+k\right)$ time, where σ is the alphabet size; $O\left(n \log n \log ^{\beta} n\right)$ space and $O\left(p+(1+\epsilon)^{\beta} \log \log n+k\right)$ time; and $O\left(\sigma^{\beta^{2}} n \log ^{\beta} \log n\right)$ space and $O((p+\beta)(\beta-\alpha)+k)$ time.

Variants of the simpler case where $P_{1}=P_{2}=P$ have been studied as well. Keller et al. [7] considered the problem of, given an occurrence of P in T, find the next one to the right. They obtained an index using $O\left(n \log ^{\epsilon} n\right)$ space and $O(\log \log n)$ time. Another related problem they studied was to find a maximal set of nonoverlapping occurrences of P. They obtained the same space and $O(\log \log n+k)$ time. Muthukrishnan [8] considered a document-based version of the problem: T is divided into documents, and we want to report all the k documents where two occurrences of P appear at distance at most β. For β fixed at indexing time, he obtained $O(n)$ space and optimal $O(p+k)$ time; the space raises to $O(n \log n)$ when β is given as a part of the query. Finally, Brodal et al. [4] considered the related pattern mining problem:

[^0]find all z maximal patterns P that appear at least twice in T, separated by a distance in $[\alpha, \beta]$. They obtain $O(n \log n+z)$ time, within $O(n)$ space.

In this paper we focus on a rather clean variant of the problem, which (somewhat surprisingly) has not been considered before: find the pairs of consecutive positions of P in T, which are separated by a distance in the range $[\alpha, \beta]$. It is formally stated as follows.

Problem 1. Index a text $T[1 \ldots n]$, such that whenever a pattern $P[1 \ldots p]$ and a range $[\alpha, \beta]$ come as a query, we can report all pairs (i, j) of consecutive occurrences of P in T with $\alpha \leq j-i \leq \beta$.

Note that we are not finding pairs of occurrences at distances in $[\alpha, \beta]$ if they are not consecutive. For example, for $[\alpha, \beta]=[4,6]$ and $P=a b c$, we will find the pair of positions (7,12) in $T=$ abcabcabcdeabc, but not (1,7), since the occurrences at 1 and 7 , while within the distance range, are not consecutive.

By using heavy-path decompositions on suffix trees and geometric data structures, we obtain the following result.
Theorem 1. There exists an $O(n \log n)$ space data structure with query time $O(p+k)$ for Problem 1 , where k is the output size.

2. Notation and preliminaries

The i th leftmost character of T is denoted by $T[i]$, where $1 \leq i \leq n$. The sub-string starting at location i and ending at location j is denoted by $T[i \ldots j]$. A suffix is a substring that ends at location n and a prefix is a string that starts at location 1.

The suffix tree (ST) of T is a compact representation of all suffixes of $T \circ \$$, except $\$$, in the form of a compact trie [10]. Here $\$$ a special symbol that does not appear anywhere in T and $T \circ \$$ is the concatenation of T and $\$$. The number of leaves in ST is exactly n. The degree of an internal node is at least two. We use ℓ_{i} to represent the i th leftmost leaf in ST. The edges are labeled with characters and the concatenation of edge labels on the path from root to a node u is denoted by path (u). Then, path $\left(\ell_{i}\right)$ corresponds to the i th lexicographically smallest suffix of T, and its starting position is denoted by SA $[i]$. The locus of a pattern P in T, denoted by locus (P), is the highest node u in ST, such that P is a prefix of path (u). The set of occurrences of P in T is given by SA[$i]$ over all i 's, where ℓ_{i} is in the subtree of locus (P). The space occupied by ST is $O(n)$ words and the time for finding the locus of an input pattern P is $O(|P|)$. Additionally, for two nodes u and v, we shall use Ica (u, v) to denote their lowest common ancestor.

We now describe the concept of heavy path and heavy path decomposition. The heavy path of ST is the path starting from the root, where each node u on the path is the child with the largest subtree size (measured as number of leaves in it; ties are broken arbitrary). The heavy path decomposition is the operation where we decompose each off-path subtree of the heavy path recursively. As a result, any path(•) in ST will be partitioned into disjoint heavy paths. Sleator and Tarjan [9] proved the following property; we will use $\log n$ to denote logarithm in base 2 .

Lemma 1. The number of heavy paths intersected by any root to leaf path is at most $\log n$, where n is the number of leaves in the tree.
Each node belongs to exactly one heavy path and each heavy path contains exactly one leaf node. The heavy path containing ℓ_{i} will be called the i-th heavy path (and identified simply by the number i). For an internal node u, let $\mathrm{hp}(u)$ be the unique heavy path that contains u.

Definition 1. The set \mathcal{H}_{i} is defined as the set of all leaf identifiers j, where the path from root to ℓ_{j} intersects with the i-th heavy path. That is, $\mathcal{H}_{i}=\left\{j \mid \operatorname{hp}\left(\operatorname{Ica}\left(\ell_{j}, \ell_{i}\right)\right)=i\right\}$.

Lemma 2. $\sum_{i=i}^{n}\left|\mathcal{H}_{i}\right| \leq n \log n$.
Proof. For any particular j, path from root to ℓ_{j} can intersect at most $\log n$ heavy paths, by Lemma 1 . Therefore, j cannot be a part of more than $\log n$ sets.

3. The data structure

The key idea is to reduce our pattern matching problem to an equivalent geometric problem. Specifically, to the orthogonal segment intersection problem.

Definition 2 (Orthogonal segment intersection). A horizontal segment ($x_{i}, x_{i}^{\prime}, y_{i}$) is a line connecting the 2D points (x_{i}, y_{i}) and $\left(x_{i}^{\prime}, y_{i}\right)$. A segment intersection problem asks to pre-process a given set \mathcal{S} of horizontal segments into a data structure, such that whenever a vertical segment ($x^{\prime \prime}, y^{\prime}, y^{\prime \prime}$) comes as a query, we can efficiently report all the horizontal segments in \mathcal{S} that intersect with the query segment. Specifically, we can output the following set: $\left\{\left(x_{i}, x_{i}^{\prime}, y_{i}\right) \in \mathcal{S} \mid x_{i} \leq x^{\prime \prime} \leq x_{i}^{\prime}, y^{\prime} \leq\right.$ $\left.y_{i} \leq y^{\prime \prime}\right\}$.

https://daneshyari.com/en/article/433740

Download Persian Version:

https://daneshyari.com/article/433740

Daneshyari.com

[^0]: A conference version of this paper appeared in Proc. CPM 2015.

 * Corresponding author.

 E-mail addresses: gnavarro@dcc.uchile.cl (G. Navarro), sharma.thankachan@gatech.edu (S.V. Thankachan).
 1 Funded with Basal Funds FB0001, CONICYT, Chile.
 2 This is optimal in the RAM model if we assume a general alphabet of size $O(n)$.

