
Theoretical Computer Science 638 (2016) 108–111

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Reporting consecutive substring occurrences under bounded

gap constraints ✩

Gonzalo Navarro a,1, Sharma V. Thankachan b,∗
a Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile
b School of Computational Science and Engineering, Georgia Institute of Technology, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2015
Received in revised form 14 October 2015
Accepted 5 February 2016
Available online 9 February 2016

Keywords:
Suffix trees
Geometric data structures
Heavy-path decomposition
Pattern matching

We study the problem of indexing a text T [1 . . .n] such that whenever a pattern P [1 . . . p]
and an interval [α, β] come as a query, we can report all pairs (i, j) of consecutive
occurrences of P in T with α ≤ j − i ≤ β . We present an O (n log n) space data structure
with optimal O (p + k) query time, where k is the output size.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Detecting close occurrences of patterns in a text is a problem that has been considered in various flavors. For example,
Iliopoulos and Rahman [6] consider the problem of finding all the k occurrences of two patterns P1 and P2 (of total length
p) separated by a fixed distance α known at indexing time. They gave a data structure using O (n logε n) space and query
time O (p + log log n + k), for any constant ε > 0. Bille and Gørtz [2] retained the same space and improved the time to the
optimal O (p + k).2 The problem becomes, however, much messier when we allow the distance between P1 and P2 to be
in a range [α, β], even if these are still known at indexing time. Bille et al. [3] obtained various tradeoffs, for example O (n)

space and O (p +σβ log log n +k) time, where σ is the alphabet size; O (n log n logβ n) space and O (p + (1 +ε)β log log n +k)

time; and O (σ β2
n logβ log n) space and O ((p + β)(β − α) + k) time.

Variants of the simpler case where P1 = P2 = P have been studied as well. Keller et al. [7] considered the problem
of, given an occurrence of P in T , find the next one to the right. They obtained an index using O (n logε n) space and
O (log log n) time. Another related problem they studied was to find a maximal set of nonoverlapping occurrences of P .
They obtained the same space and O (log log n + k) time. Muthukrishnan [8] considered a document-based version of the
problem: T is divided into documents, and we want to report all the k documents where two occurrences of P appear at
distance at most β . For β fixed at indexing time, he obtained O (n) space and optimal O (p + k) time; the space raises to
O (n log n) when β is given as a part of the query. Finally, Brodal et al. [4] considered the related pattern mining problem:

✩ A conference version of this paper appeared in Proc. CPM 2015.

* Corresponding author.
E-mail addresses: gnavarro@dcc.uchile.cl (G. Navarro), sharma.thankachan@gatech.edu (S.V. Thankachan).

1 Funded with Basal Funds FB0001, CONICYT, Chile.
2 This is optimal in the RAM model if we assume a general alphabet of size O (n).

http://dx.doi.org/10.1016/j.tcs.2016.02.005
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.02.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gnavarro@dcc.uchile.cl
mailto:sharma.thankachan@gatech.edu
http://dx.doi.org/10.1016/j.tcs.2016.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.02.005&domain=pdf

G. Navarro, S.V. Thankachan / Theoretical Computer Science 638 (2016) 108–111 109

find all z maximal patterns P that appear at least twice in T , separated by a distance in [α, β]. They obtain O (n log n + z)
time, within O (n) space.

In this paper we focus on a rather clean variant of the problem, which (somewhat surprisingly) has not been considered
before: find the pairs of consecutive positions of P in T , which are separated by a distance in the range [α, β]. It is formally
stated as follows.

Problem 1. Index a text T [1 . . .n], such that whenever a pattern P [1 . . . p] and a range [α, β] come as a query, we can report
all pairs (i, j) of consecutive occurrences of P in T with α ≤ j − i ≤ β .

Note that we are not finding pairs of occurrences at distances in [α, β] if they are not consecutive. For example, for
[α, β] = [4, 6] and P = abc, we will find the pair of positions (7, 12) in T = abcabcabcdeabc, but not (1, 7), since the
occurrences at 1 and 7, while within the distance range, are not consecutive.

By using heavy-path decompositions on suffix trees and geometric data structures, we obtain the following result.

Theorem 1. There exists an O (n logn) space data structure with query time O (p + k) for Problem 1, where k is the output size.

2. Notation and preliminaries

The ith leftmost character of T is denoted by T [i], where 1 ≤ i ≤ n. The sub-string starting at location i and ending
at location j is denoted by T [i . . . j]. A suffix is a substring that ends at location n and a prefix is a string that starts at
location 1.

The suffix tree (ST) of T is a compact representation of all suffixes of T ◦ $, except $, in the form of a compact trie [10].
Here $ a special symbol that does not appear anywhere in T and T ◦ $ is the concatenation of T and $. The number of
leaves in ST is exactly n. The degree of an internal node is at least two. We use �i to represent the ith leftmost leaf in ST.
The edges are labeled with characters and the concatenation of edge labels on the path from root to a node u is denoted
by path(u). Then, path(�i) corresponds to the ith lexicographically smallest suffix of T , and its starting position is denoted
by SA[i]. The locus of a pattern P in T , denoted by locus(P), is the highest node u in ST, such that P is a prefix of path(u).
The set of occurrences of P in T is given by SA[i] over all i’s, where �i is in the subtree of locus(P). The space occupied
by ST is O (n) words and the time for finding the locus of an input pattern P is O (|P |). Additionally, for two nodes u and v ,
we shall use lca(u, v) to denote their lowest common ancestor.

We now describe the concept of heavy path and heavy path decomposition. The heavy path of ST is the path starting from
the root, where each node u on the path is the child with the largest subtree size (measured as number of leaves in it;
ties are broken arbitrary). The heavy path decomposition is the operation where we decompose each off-path subtree of the
heavy path recursively. As a result, any path(·) in ST will be partitioned into disjoint heavy paths. Sleator and Tarjan [9]
proved the following property; we will use log n to denote logarithm in base 2.

Lemma 1. The number of heavy paths intersected by any root to leaf path is at most logn, where n is the number of leaves in the tree.

Each node belongs to exactly one heavy path and each heavy path contains exactly one leaf node. The heavy path
containing �i will be called the i-th heavy path (and identified simply by the number i). For an internal node u, let hp(u)

be the unique heavy path that contains u.

Definition 1. The set Hi is defined as the set of all leaf identifiers j, where the path from root to � j intersects with the i-th
heavy path. That is, Hi = { j | hp(lca(� j, �i)) = i}.

Lemma 2.
∑n

i=i |Hi | ≤ n log n.

Proof. For any particular j, path from root to � j can intersect at most log n heavy paths, by Lemma 1. Therefore, j cannot
be a part of more than log n sets. �
3. The data structure

The key idea is to reduce our pattern matching problem to an equivalent geometric problem. Specifically, to the orthog-
onal segment intersection problem.

Definition 2 (Orthogonal segment intersection). A horizontal segment (xi, x′
i, yi) is a line connecting the 2D points (xi, yi)

and (x′
i, yi). A segment intersection problem asks to pre-process a given set S of horizontal segments into a data structure,

such that whenever a vertical segment (x′′, y′, y′′) comes as a query, we can efficiently report all the horizontal segments
in S that intersect with the query segment. Specifically, we can output the following set: {(xi , x′

i, yi) ∈ S | xi ≤ x′′ ≤ x′
i, y

′ ≤
yi ≤ y′′}.

Download English Version:

https://daneshyari.com/en/article/433740

Download Persian Version:

https://daneshyari.com/article/433740

Daneshyari.com

https://daneshyari.com/en/article/433740
https://daneshyari.com/article/433740
https://daneshyari.com

