Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Reporting consecutive substring occurrences under bounded gap constraints [☆]

^a Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile
^b School of Computational Science and Engineering, Georgia Institute of Technology, USA

ARTICLE INFO

Article history: Received 31 March 2015 Received in revised form 14 October 2015 Accepted 5 February 2016 Available online 9 February 2016

Keywords: Suffix trees Geometric data structures Heavy-path decomposition Pattern matching

ABSTRACT

We study the problem of indexing a text T[1...n] such that whenever a pattern P[1...p] and an interval $[\alpha, \beta]$ come as a query, we can report all pairs (i, j) of consecutive occurrences of P in T with $\alpha \leq j - i \leq \beta$. We present an $O(n \log n)$ space data structure with optimal O(p + k) query time, where k is the output size.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Detecting close occurrences of patterns in a text is a problem that has been considered in various flavors. For example, Iliopoulos and Rahman [6] consider the problem of finding all the *k* occurrences of two patterns P_1 and P_2 (of total length *p*) separated by a fixed distance α known at indexing time. They gave a data structure using $O(n \log^{\epsilon} n)$ space and query time $O(p + \log \log n + k)$, for any constant $\epsilon > 0$. Bille and Gørtz [2] retained the same space and improved the time to the optimal O(p + k).² The problem becomes, however, much messier when we allow the distance between P_1 and P_2 to be in a range $[\alpha, \beta]$, even if these are still known at indexing time. Bille et al. [3] obtained various tradeoffs, for example O(n) space and $O(p + \sigma^{\beta} \log \log n + k)$ time, where σ is the alphabet size; $O(n \log n \log^{\beta} n)$ space and $O(p + (1 + \epsilon)^{\beta} \log \log n + k)$ time; and $O(\sigma^{\beta^2} n \log^{\beta} \log n)$ space and $O((p + \beta)(\beta - \alpha) + k)$ time.

Variants of the simpler case where $P_1 = P_2 = P$ have been studied as well. Keller et al. [7] considered the problem of, given an occurrence of *P* in *T*, find the next one to the right. They obtained an index using $O(n \log^{\epsilon} n)$ space and $O(\log \log n)$ time. Another related problem they studied was to find a maximal set of nonoverlapping occurrences of *P*. They obtained the same space and $O(\log \log n + k)$ time. Muthukrishnan [8] considered a document-based version of the problem: *T* is divided into documents, and we want to report all the *k* documents where two occurrences of *P* appear at distance at most β . For β fixed at indexing time, he obtained O(n) space and optimal O(p + k) time; the space raises to $O(n \log n)$ when β is given as a part of the query. Finally, Brodal et al. [4] considered the related pattern mining problem:

¹ Funded with Basal Funds FB0001, CONICYT, Chile.

http://dx.doi.org/10.1016/j.tcs.2016.02.005 0304-3975/© 2016 Elsevier B.V. All rights reserved.

CrossMark

^{*} A conference version of this paper appeared in *Proc. CPM 2015*.

^{*} Corresponding author.

E-mail addresses: gnavarro@dcc.uchile.cl (G. Navarro), sharma.thankachan@gatech.edu (S.V. Thankachan).

² This is optimal in the RAM model if we assume a general alphabet of size O(n).

find all *z* maximal patterns *P* that appear at least twice in *T*, separated by a distance in $[\alpha, \beta]$. They obtain $O(n \log n + z)$ time, within O(n) space.

In this paper we focus on a rather clean variant of the problem, which (somewhat surprisingly) has not been considered before: find the pairs of consecutive positions of *P* in *T*, which are separated by a distance in the range $[\alpha, \beta]$. It is formally stated as follows.

Problem 1. Index a text T[1...n], such that whenever a pattern P[1...p] and a range $[\alpha, \beta]$ come as a query, we can report all pairs (i, j) of consecutive occurrences of P in T with $\alpha \le j - i \le \beta$.

Note that we are not finding pairs of occurrences at distances in $[\alpha, \beta]$ if they are not consecutive. For example, for $[\alpha, \beta] = [4, 6]$ and P = abc, we will find the pair of positions (7, 12) in T = abcabcabcdeabc, but not (1, 7), since the occurrences at 1 and 7, while within the distance range, are not consecutive.

By using heavy-path decompositions on suffix trees and geometric data structures, we obtain the following result.

Theorem 1. There exists an $O(n \log n)$ space data structure with query time O(p+k) for Problem 1, where k is the output size.

2. Notation and preliminaries

The *i*th leftmost character of *T* is denoted by T[i], where $1 \le i \le n$. The sub-string starting at location *i* and ending at location *j* is denoted by $T[i \dots j]$. A suffix is a substring that ends at location *n* and a prefix is a string that starts at location 1.

The *suffix tree* (ST) of *T* is a compact representation of all suffixes of $T \circ \$$, except \$, in the form of a compact trie [10]. Here \$ a special symbol that does not appear anywhere in *T* and $T \circ \$$ is the concatenation of *T* and \$. The number of leaves in ST is exactly *n*. The degree of an internal node is at least two. We use ℓ_i to represent the *i*th leftmost leaf in ST. The edges are labeled with characters and the concatenation of edge labels on the path from root to a node *u* is denoted by path(*u*). Then, path(ℓ_i) corresponds to the *i*th lexicographically smallest suffix of *T*, and its starting position is denoted by SA[*i*]. The locus of a pattern *P* in *T*, denoted by locus(*P*), is the highest node *u* in ST, such that *P* is a prefix of path(*u*). The set of occurrences of *P* in *T* is given by SA[*i*] over all *i*'s, where ℓ_i is in the subtree of locus(*P*). The space occupied by ST is *O*(*n*) words and the time for finding the locus of an input pattern *P* is *O*(|*P*|). Additionally, for two nodes *u* and *v*, we shall use lca(*u*, *v*) to denote their lowest common ancestor.

We now describe the concept of *heavy path* and *heavy path decomposition*. The heavy path of ST is the path starting from the root, where each node u on the path is the child with the largest subtree size (measured as number of leaves in it; ties are broken arbitrary). The *heavy path decomposition* is the operation where we decompose each off-path subtree of the heavy path recursively. As a result, any path(·) in ST will be partitioned into disjoint heavy paths. Sleator and Tarjan [9] proved the following property; we will use log n to denote logarithm in base 2.

Lemma 1. The number of heavy paths intersected by any root to leaf path is at most logn, where n is the number of leaves in the tree.

Each node belongs to exactly one heavy path and each heavy path contains exactly one *leaf* node. The heavy path containing ℓ_i will be called the *i*-th heavy path (and identified simply by the number *i*). For an internal node *u*, let hp(*u*) be the unique heavy path that contains *u*.

Definition 1. The set \mathcal{H}_i is defined as the set of all leaf identifiers *j*, where the path from root to ℓ_j intersects with the *i*-th heavy path. That is, $\mathcal{H}_i = \{j \mid \mathsf{hp}(\mathsf{lca}(\ell_j, \ell_i)) = i\}$.

Lemma 2. $\sum_{i=i}^{n} |\mathcal{H}_i| \leq n \log n$.

Proof. For any particular *j*, path from root to ℓ_j can intersect at most log *n* heavy paths, by Lemma 1. Therefore, *j* cannot be a part of more than log *n* sets. \Box

3. The data structure

The key idea is to reduce our pattern matching problem to an equivalent geometric problem. Specifically, to the *orthogonal segment intersection problem*.

Definition 2 (*Orthogonal segment intersection*). A horizontal segment (x_i, x'_i, y_i) is a line connecting the 2D points (x_i, y_i) and (x'_i, y_i) . A segment intersection problem asks to pre-process a given set S of horizontal segments into a data structure, such that whenever a vertical segment (x'', y', y'') comes as a query, we can efficiently report all the horizontal segments in S that intersect with the query segment. Specifically, we can output the following set: $\{(x_i, x'_i, y_i) \in S \mid x_i \leq x'' \leq x'_i, y' \leq y_i \leq y''\}$.

Download English Version:

https://daneshyari.com/en/article/433740

Download Persian Version:

https://daneshyari.com/article/433740

Daneshyari.com