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We consider the problems of computing the maximal and the minimal non-empty suffixes 
of substrings of a longer text of length n. For the minimal suffix problem we show that for 
every τ , 1 ≤ τ ≤ log n, there exists a linear-space data structure with O(τ ) query time 
and O(n log n/τ ) preprocessing time. As a sample application, we show that this data 
structure can be used to compute the Lyndon decomposition of any substring of the text 
in O(kτ ) time, where k is the number of distinct factors in the decomposition. For the 
maximal suffix problem, we give a linear-space structure with O(1) query time and O(n)

preprocessing time. In other words, we simultaneously achieve both the optimal query 
time and the optimal construction time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computing the lexicographically maximal and minimal suffixes of a string is both an interesting problem on its own 
and a crucial ingredient in solutions to many other problems. For example, the famous constant-space pattern matching 
algorithm of Crochemore and Perrin and its more recent variants are based on the so-called critical factorizations, which 
can be derived from the maximal suffixes [1,2].

The first non-trivial solution of the maximal and minimal suffix problems is due to Weiner, who introduced the suffix 
tree [3]. The suffix tree of a string can be constructed in linear time and occupies linear space. Once constructed, it allows 
to retrieve the maximal and the minimal suffixes in constant time. Later, this result was improved by Duval [4] who showed 
that the suffixes can be found in linear time and constant additional space.

We consider a natural generalization of these problems. We assume that the strings we are asked to compute the 
maximal or the minimal suffixes for are actually substrings of a text T and that they are specified by their endpoints in T . 
Then, one can preprocess T and subsequently use this information to significantly speed up the computation of the desired 

✩ This article is based on a study first reported at 24th and 25th Symposiums on Combinatorial Pattern Matching.
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suffixes of a query string. This seems to be a very natural setting whenever one thinks of storing large collections of static 
text data.

Let n be the length of T . We first show that for every τ , 1 ≤ τ ≤ logn, there exists a linear-space data structure solving 
the minimal suffix problem with O(τ ) query time and O(

n log n
τ ) preprocessing time. Secondly, we describe a linear-space 

data structure for the maximal suffix problem with O(1) query time which can be constructed in linear time. As a particular 
application, we show how to compute the Lyndon decomposition [5] of a substring of T in O(kτ ) time, where k is the 
number of distinct factors in the decomposition.

The key idea of our solution is to select, for each position j of the text T , a set of O(log n) canonical substrings — 
substrings of T that end at j such that the lengths of two consecutive canonical substrings differ by a factor of at most 2. 
Note that for substrings with a fixed end-position, the maximal suffix becomes larger as the length of a substring increases, 
while the minimal suffix becomes smaller. Thus, for a query x = T [i.. j] we know that either the answer is the same as for 
the longest canonical suffix of x, or the resulting suffix is longer than |x|/2. For the latter case we develop a subroutine 
which exploits periodicities to compute the maximal (resp. minimal) suffix given its approximate length (within a factor 
of 2). The answers for canonical substrings are stored in O(log n) bits for each position j. These bits let us to retrieve 
approximate lengths only; the exact answers are computed as in the previous case.

The basic O(n log n)-time construction algorithm computes the answers for all canonical substrings. However, for maxi-
mal suffixes we develop a linear-time construction algorithm. This is possible mainly due to the following fact: the length 
of the maximal suffix of a string cannot increase by more than one when a single letter is appended at the end. Minimal 
suffixes do not enjoy such a property, e.g., when aa is extended to aab the length of the minimal suffix increases from 1
to 3.

Related work. Text indexes that support various substring queries have been extensively studied in the literature. The 
study dates back to the invention of the suffix tree. Augmented properly, the suffix tree can be used to answer the substrings 
equality and the longest common prefix queries in constant time and linear space [6].

Cormode and Muthukrishnan [7] initiated a study on substring compression problems, where the goal is to quickly find 
the compressed representation or the compressed size for a given substring of the text. Some of their results were later 
improved in [8] and [9].

Recently, substring queries gained more attention. It has been shown that various periodicity-related queries can be 
answered in logarithmic or constant time [10,11,9]. Some of these results apply a linear-space data structure for internal 
pattern matching queries, which are to find all occurrences of one substring of the text in another substring [9]. Yet another 
type of substring queries is range LCP queries studied in [12,13].

Queries asking for the k-th lexicographically smallest suffix of a substring, more general than both the minimal and 
the maximal suffix queries, have also been studied. They can be answered in O(log n)-time by a wavelet suffix tree, a 
linear space data structure which admits an O(n

√
log n)-time construction algorithm [14]. However, wavelet suffix trees 

are less efficient and much more involved than the data structures we specifically design for minimal and maximal suffix 
queries.

2. Preliminaries

We start by introducing some standard notation and definitions. Let � be a finite non-empty set (called an alphabet). 
The elements of � are letters. A finite ordered sequence of letters (possibly empty) is called a string. Letters in a string are 
numbered starting from 1, that is, a string T of length k consists of letters T [1], T [2], . . . , T [k]. The length of T is denoted 
by |T |. For i ≤ j, T [i.. j] denotes the substring of T from position i to position j (inclusive). If i = 1 or j = |T |, then we omit 
these indices and we write T [.. j] and T [i..]. Substring T [.. j] is called a prefix of T , and T [i..] is called a suffix of T .

A border of a string T is a string that is both a prefix and a suffix of T but differs from T . A string T is called periodic 
with period ρ if T = ρsρ ′ for an integer s ≥ 1 and a (possibly empty) proper prefix ρ ′ of ρ . Borders and periods are dual 
notions: if T has period ρ , then it has a border of length |T | − |ρ|, and vice versa; see, e.g., [15].

Fact 1. (See [16].) If a string T has periods ρ and γ such that |ρ| + |γ | ≤ |T |, then T has a period of length gcd(|ρ|, |γ |), the greatest 
common divisor of ρ and γ .

Lemma 2. If a string T has a proper border, then its shortest border has length at most |T |/2.

Proof. Suppose that the shortest non-empty border of T has length larger than |T |/2, then by border-period duality T has 
a period ρ smaller than |T |/2. Since 2ρ is also a period and 2ρ < |T |, we get another (shorter) border of T , a contradic-
tion. �

We assume the word RAM model of computation [17] with word size �(log n). Letters are treated as integers in range 
{1, . . . , |�|}, so a pair of letters can be compared in O (1) time. We also assume � = nO(1) so that all letters of the input 
text T can be sorted in O(n) time. The natural linear order on � is extended in a standard way to the lexicographic order 
of strings over �. Namely, T1 ≺ T2 if either
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