NEUROSCIENCE FOREFRONT REVIEW

REGULATION OF THE MESOLIMBIC DOPAMINE CIRCUIT BY FEEDING PEPTIDES

S. LIU AND S. L. BORGLAND *

Hotchkiss Brain Institute, Department of Physiology & Pharmacology, The University of Calgary, Calgary, Alberta T2N 4N1, Canada

Abstract—Polypeptides produced in the gastrointestinal tract, stomach, adipocytes, pancreas and brain that influence food intake are referred to as 'feeding-related' peptides. Most peptides that influence feeding exert an inhibitory effect (anorexigenic peptides). In contrast, only a few exert a stimulating effect (orexigenic peptides), such as ghrelin. Homeostatic feeding refers to when food consumed matches energy deficits. However, in western society where access to palatable energy-dense food is nearly unlimited, food is mostly consumed for non-homeostatic reasons. Emerging evidence implicates the mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), as a key substrate for non-homeostatic feeding. VTA dopamine neurons encode cues that predict rewards and phasic release of dopamine in the ventral striatum motivates animals to forage for food. To elucidate how feeding-related peptides regulate reward pathways is of importance to reveal the mechanisms underlying nonhomeostatic or hedonic feeding. Here, we review the current knowledge of how anorexigenic peptides and orexigenic peptides act within the VTA. © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: feeding peptides, ventral tegmental area, dopamine, anorectic, orexigenic, ingestive behavior.

*Corresponding author. Tel: +1-403-220-6967; fax: +1-403-283-2700.

E-mail address: s.borgland@ucalgary.ca (S. L. Borgland).

Abbreviations: a-MSH, a-Melanocyte-stimulating hormone; AgRP, Agouti-related peptide; CART, cocaine- and amphetamine-regulated transcript; CCK, cholecystokinin; CGRP, calcitonin gene-related peptide; CPP, conditioned place preference; CRF, corticotropinreleasing factor; DAT, dopamine transporter; DAMGO, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DPDPE, [D-Pen^{2,5}]Enkephalin, [D-Pen²,D-Pen⁵]Enkephalin; FSCV, fast-scan cyclic voltammetry; GHSR, growth hormone secretagogue receptor; GLP-1, glucagon-like peptide 1; icv, intracerebroventricular; ip, intraperitoneal; iv, intravenous; KO, knockout; LDTg, lateral dorsal tegmentum; LepRb, long-form signaling receptors; LTD, Long-term depression; MCH, melanin-concentrating hormone; MTII, (Ac-NIe4, Asp5, DPhe7, Lys10)-Cyclo-a-MSH (4-10) amide; NAc, nucleus accumbens; NMDA, N-methyl-p-aspartate; NPY, neuropeptide Y; NTS, nucleus tractus solitarius; OLETF, otsuka long-evans Tokushima fatty; Pl3K, phosphoinsitol 3 kinase; PLC, phospholipase C; PVT, paraventricular thalamic nucleus; sCT, salmon calcitonin; TH, tyrosine hydroxylase; VTA, ventral tegmental area.

http://dx.doi.org/10.1016/j.neuroscience.2014.12.046

0306-4522/© 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Contents	
Introduction	19
Peripherally derived anorexigenic peptides	22
Insulin	22
Insulin signaling in VTA dopamine neurons	22
Insulin alters dopamine clearance and synthesis in	the
VTA	22
Insulin in the VTA alters ingestive behaviors	24
Leptin	25
Leptin signaling in VTA dopamine neurons	25
Leptin modulates dopamine concentration	25
Leptin in the VTA influences ingestive behavior	26
Amylin	26
Peripherally and/or centrally derived anorexigenic peptides	26
Glucagon-like peptide 1 (GLP-1)	26
Cholecystokinin (CCK)	27
Mesolimbic CCK action on food intake	27
Centrally derived anorexigenic peptides	27
α -Melanocyte-stimulating hormone (α -MSH)	27
Neurotensin	27
Effect of intra-VTA neurotensin on ingestive behavior	28
Corticotropin-releasing hormone	28
Intra-VTA CRF and ingestive behavior	28
Cocaine- and amphetamine-regulated transcript (CART)	28
Other anorexigenic peptides	29
Peripherally derived orexigenic peptides	29
Ghrelin	29
Ghrelin increases dopamine in the NAc	29
Effect of ghrelin in the VTA on ingestive behavior	30
Centrally derived orexigenic peptides	30
Orexin/hypocretin	30
Cellular actions of orexin/hypocretin in the VTA	30
Effect of intra-VTA orexin on ingestive behavior	31
Galanin	31
Melanin-concentrating hormone	31
Agouti-related peptide (AgRP)	32
Opioid peptides	32
Neuropeptide Y (NPY)	32
Conclusions	33
Acknowledgements	33
References	33

Contonte

INTRODUCTION

Confucius said, "The desire for food is a part of human nature". Desire is elicited by the enjoyment or thoughts of the wanted item, such that individuals will take action to obtain their goal. In an environment rich in easily accessible palatable foods, the signals to eat or to stop eating are very complex and extend beyond the control of the homeostatic system that responds to metabolic and satiety signals from the gut. A current theory is that the brain's mesolimbic dopaminergic system responds to the sight, smell and taste of food in addition to cues that predict food and overrides homeostatic, metabolismdriven food intake to promote ingestive behavior (Palmiter, 2007). Dopamine neurons originating in the ventral tegmental area (VTA) send projections to forebrain regions including the nucleus accumbens (NAc) and the prefrontal cortex (PFC). Mesolimbic dopamine neurons reinforce learning of cues that predict reward (Schultz et al., 1997) and can engage animals in effortful behavior to obtain them (Salamone and Correa, 2012).

The role of dopamine promoting ingestive behavior was originally described using 6-hydroxydopamine (6-OHDA) lesions into the lateral hypothalamus of midbrain dopamine neurons (Ungerstedt, 1971; Fibiger et al., 1973). Later studies developed this concept by demonstrating that transgenic dopamine-deficient mice do not engage in goal-directed motivated behavior and do not eat or drink (Zhou and Palmiter, 1995). Paradoxically, stimulant agents that increase dopamine concentration, such as amphetamine or cocaine, are typically anorectic (Booth, 1968; Balopole et al., 1979; Bedford et al., 1980) likely due to increased locomotor activity and an increase in hypothalamic norepinephrine levels, both of which are known to decrease food intake (Booth, 1968; Hoebel et al., 1989). Dopaminergic neurons are not required for the motoric action of food intake, as upon startle, or when placed in water, animals will engage in feeding behavior (Zhou and Palmiter, 1995). Therefore,

Table 1. Effects of intra-VTA feeding peptides on ingestive behaviors

Peptide	Behavioral effects	Mode of administration/concentration	References
Anorexigenic			
Insulin	Decreased food intake for 24 h	Intra-VTA 0.005–5 mU/side	Bruijnzeel et al. (2011)
	Elevated brain reward thresholds	Intra-VTA 0.005 mU/side	Bruijnzeel et al. (2011)
	Reduced sucrose preference; attenuated	Insulin receptor KO in TH-expressing neurons	Könner et al. (2011)
	cocaine-induced locomotor activity under food-		
	restricted conditions		
	Reduced sated high-fat feeding	Intra-VTA 0.3 μg/side	Mebel et al. (2012)
	Inhibited CPP for food	Intra-VTA 63 nmol or 2 µmol	Labouèbe et al. (2013)
	Reduced food anticipatory behaviors	Intra-VTA 5 mU/side	Labouèbe et al. (2013)
Leptin	Decreased food intake (72 h) and body weight	Intra-VTA 15–500 ng/side	Bruijnzeel et al. (2011,
	(48 h)		2013)
	Elevated brain reward thresholds	Intra-VTA 15 ng/side	Bruijnzeel et al. (2011)
	Suppressed hyperactivity in an animal model for	Intra-VTA 0.1–1 μg/side	Verhagen et al. (2011)
	anorexia nervosa		
	Increased food intake, locomotor activity, and	Selective leptin receptor knockdown by RNAi	Hommel et al. (2006)
	sensitivity to highly palatable food	in the VTA	
	Augmented progressive ratio responding for	Selective leptin receptor knockdown by RNAi	Davis et al. (2011a,b)
	sucrose	in the VTA	
	Elevated anxiogenic-like behaviors	Selective deletion of leptin receptor in	Liu et al. (2011)
		dopamine neurons	
	Tempered high fat-induced obesity	Leptin over expression in VTA	Scarpace et al. (2013)
Glucagon (GLP-1 or	Suppressed progressive ratio operant responding for food	Intra-VTA 0.03–0.1 μg exendin-4	Dickson et al. (2012)
Exendin-4)	Reduced the reinforcing properties of cocaine or	Intra-VTA: 0.1 μg exendin-4 or 1.0 μg GLP-1	Shirazi et al. (2013),
	alcohol	maa vira oli µg oxonani 4 or 1.0 µg OEI -1	Egecioglu et al. (2013)

20

dopamine neurons appear to be critical for the reinforcement and/or salience of food-related cues and motivation to obtain food.

The motivation to eat is regulated by a variety of intrinsic and extrinsic factors. Metabolic signals, including neuronal or circulating peptides released in response to internal states, such as hunger or satiety, can promote or inhibit food intake respectively. Dopamine transmission may provide one mechanism that bridges internal states with motivated behavior as the peptides that govern these internal states can also exert their effects on feeding via dopaminergic mechanisms (Wilson et al., 1995). Therefore, examination of brain areas, such as the VTA, that are implicated in the salience and motivation for rewards is necessary for better understanding the neurobiology of ingestive behavior. In this review, we outline the evidence for receptors and signaling of feeding-related peptides within the VTA and characterize the effects of feedingrelated peptides on VTA dopamine neuronal excitability, synaptic transmission, modulation of dopamine concentration as well as behavioral outputs. Important variables that can influence how peptides modulate the mesolimbic circuit include the diet the animals are fed (chow vs. high fat), the satiety state of the animal (fed or fasted), the metabolic state of the animal (lean or obese) and how activity of the mesolimbic circuit is assayed (multiple methods of detection of dopamine concentration, electrophysiological or biochemical measurements of cellular activity). Therefore, we have highlighted these factors throughout the review and in the tables (see Table 1).

Download English Version:

https://daneshyari.com/en/article/4337512

Download Persian Version:

https://daneshyari.com/article/4337512

Daneshyari.com