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For each regular language L we describe a family of canonical nondeterministic acceptors 
(nfas). Their construction follows a uniform recipe: build the minimal dfa for L in a locally 
finite variety V , and apply an equivalence between the category of finite V-algebras and 
a suitable category of finite structured sets and relations. By instantiating this to different 
varieties, we recover three well-studied canonical nfas: V = boolean algebras yields the 
átomaton of Brzozowski and Tamm, V = semilattices yields the jiromaton of Denis, Lemay 
and Terlutte, and V = Z2-vector spaces yields the minimal xor automaton of Vuillemin 
and Gama. Moreover, we obtain a new canonical nfa called the distromaton by taking 
V = distributive lattices. Each of these nfas is shown to be minimal relative to a suitable 
measure, and we derive sufficient conditions for their state-minimality. Our approach is 
coalgebraic, exhibiting additional structure and universal properties of the canonical nfas.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the core topics in classical automata theory is the construction of state-minimal acceptors for a given regular 
language. It is well known that the difficulty of this task depends on whether one has deterministic or nondeterministic 
acceptors in mind. First, every regular language L is accepted by a unique minimal deterministic finite automaton (dfa). 
Following a classical construction due to Brzozowski [12], the state set Q L of the minimal dfa consists of all left derivatives 
of L; see Example 2.12. For nondeterministic finite automata (nfas) the situation is significantly more complex: a regu-
lar language may have many non-isomorphic state-minimal nfas, and generally there is no way to identify a “canonical” 
one among them. However, several authors proposed nondeterministic acceptors that are in some sense canonical (though 
not necessarily state-minimal), e.g. the átomaton of Brzozowski and Tamm [11], the jiromaton2 of Denis, Lemay and Ter-
lutte [13], and the minimal xor automaton of Vuillemin and Gama [25]. In each case, the respective nfa is formed by closing 
the set Q L of left derivatives under certain algebraic operations and taking a minimal set of generators as states. Specifi-
cally:
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1. The states of the átomaton are the atoms of the boolean algebra generated by Q L , obtained by closing Q L under finite 
union, finite intersection and complement.

2. The states of the jiromaton are the join-irreducibles of the join-semilattice generated by Q L , obtained by closing Q L

under finite union.
3. The states of the minimal xor automaton form a basis for the Z2-vector space generated by Q L . Recall that the Z2-vector 

space with basis B is the set of all finite subsets of B with ∅ as the zero vector and addition given by symmetric 
difference M ⊕ N = (M \ N) ∪ (N \ M). Thus the states of the minimal xor automaton are obtained by closing Q L under 
symmetric difference and choosing a basis of the resulting Z2-vector space.

Note that the minimal xor automaton differs substantially from the other examples treated in our paper w.r.t. the man-
ner of language acceptance: here we consider acceptance of Z2-weighted languages. That is, a state accepts a word iff 
the number of accepting paths is odd. In the present paper we demonstrate that all these canonical nfas arise from a 
coalgebraic construction. For this purpose we first consider deterministic automata interpreted in a locally finite variety V , 
where locally finite means that finitely generated algebras are finite. The three examples above correspond to the variety 
V of boolean algebras, join-semilattices and Z2-vector spaces, respectively. A deterministic V-automaton is a coalgebra for 
the endofunctor T� = 2 × Id� on V , for a fixed two-element algebra 2. In Section 2 we describe a Brzozowski-like con-
struction that yields, for every regular language, the minimal deterministic finite V-automaton accepting it. Next, for certain 
varieties V of interest, we derive an equivalence between the full subcategory V f of finite algebras and a suitable cate-
gory V of finite structured sets, whose morphisms are relations preserving the structure. In each case, the objects of V are 
“small” representations of their counterparts in V f , based on specific generators of algebras in V f . The equivalence V f

∼= V
then induces an equivalence between deterministic finite V-automata and coalgebras in V which are nondeterministic au-
tomata.

Hence we have the following two-step procedure for constructing a canonical nfa for a given regular language L: (i) form 
the minimal deterministic V-automaton accepting L, and (ii) use the equivalence of V f and V to obtain an equivalent nfa. 
We explain this in Section 3 and show that applying this to different varieties V yields the three canonical nfas mentioned 
above. For the átomaton one takes V = BA (boolean algebras). Then the minimal deterministic BA-automaton for L arises 
from the minimal dfa by closing its states Q L under boolean operations. The category V = BA is based on Stone duality: BA
is the dual of the category of finite sets, so it has as objects all finite sets and as morphisms all converse-functional relations. 
The equivalence functor BA f

∼=−→ BA maps each finite boolean algebra to the set of its atoms. This equivalence applied to 
the minimal deterministic BA-automaton for L gives precisely the átomaton. Similarly, by taking V = join-semilattices and 
V = vector spaces over Z2 and describing a suitable equivalence V f

∼= V , we recover the jiromaton and the minimal xor 
automaton, respectively. Finally, for V = distributive lattices we get a new canonical nfa called the distromaton, which bears 
a close resemblance to the universal automaton [20].

Example 1.1. Consider the language Ln = (a + b)∗a(a + b)n where n ∈ ω. Its minimal dfa has 2n+1 states, see Example 2.12, 
and its state-minimal nfa has n + 2 states. The átomaton, minimal xor automaton, jiromaton and distromaton of Ln are the 
nfas with at most n + 3 states depicted below; see the Examples 3.20–3.23 for detailed explanations.
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Generally, the sizes of the four canonical nfas and the minimal dfa are related as follows:

(a) All the four canonical nfas can have exponentially fewer states than the minimal dfa.
(b) The minimal xor automaton and jiromaton have no more states than the minimal dfa.
(c) The átomaton and distromaton have the same number of states, although their structure can be very different. It can 

happen that the number of states is exponentially larger than that of the minimal dfa.
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