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of new behavior and guides the changes in the components and in their coordination. Here
we show how McPal may delegate part of its control to local adaptation managers, created
on-the-fly, allowing for distribution of the adaptation indeed. We illustrate the approach
for the well-known example of the dining philosophers problem, by modeling migration

Ié?;:;gg:m_based systems from a deadlock-prone solution to a deadlock-free and starvation-free solution without
Dynamic system adaptation any system quiescence. The system migration goes through various stages, exhibiting a
Distributed control shift of control among McPal and its helpers, and changing degrees of orchestrated and
Formal verification choreographic collaboration. The distributed system adaptation is formally verified using

the mCRL2 model checker.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many systems today are affected by changes in their operational environment when running, while they cannot be
shutdown to be updated and restarted again. Instead, dynamic adaptive systems must be able to change their behavior
on-the-fly and to self-manage adaptation steps accommodating a new policy.

Dynamic adaptive systems consist of interacting components, usually distributed, and possibly hierarchically organized. In
such a system, components may start adaptation in response to various triggers, such as changes in the underlying execution
environment (e.g. failures or network congestion) or changes of requirements (e.g. imposed by the user). Adaptation of
one component in the system may inadvertently influence the behavior of the components it is interacting with, possibly
bringing about a cascade of dynamic changes in other parts of the system. Therefore, the adaptation of a distributed system
is a combination of local changes per component and global adaptation across components and hosts in the system. As
such, adaptation has to be performed in a consistent and coordinated manner so that the functionality of each separate
component and of the system as a whole are preserved while the adaptation is in progress. Due to the complexity of the
distributed dynamics of a system adapting on-the-fly, it may be rather difficult to understand whether a realization of a
change plan indeed allows the system to perform as it is supposed to, and does not violate any of its requirements, during
and after system adaptation.

One way to circumvent this is to formally model and analyze the system behavior and the adaptation changes to be
followed. In [28,5,8] we advocated how orchestrated adaptation can conveniently be captured in the coordination modeling
language Paradigm (backed up by a translation into the specification languages of the model checkers mCRL2 and Prism).
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In Paradigm, a system architecture is organized along specific collaboration dimensions, called partitions. A partition is a
well-chosen set of sub-behaviors of the local behavior of a component, specifying the phases the component goes through
when taking part in the collaboration. At a higher layer in the architecture, the component participates via its role, an
abstract representation of the phases. A protocol determines the phase transfers for the components involved. In fact, in
Paradigm, dynamic adaptation is modeled as just another collaboration, coordinated by a special component McPal [28,5,8].
As progress within a phase is completely local to the component, the use of phase transfer instead of state transfer, is the
key concept of Paradigm. This makes it possible to model, at the same time and separated from one another, both behavioral
local changes per component, and global changes across architectural layers.

Within Paradigm, the possibility of splitting up coordination and cooperation between components within a system ar-
chitecture into collaborations, each following its own protocol, has useful consequences for Paradigm’s applicability and
scalability. In a context without adaptation, Paradigm models have been developed and successfully applied for quite large
coordination situations [43,39,45,46]. In [43] the latest UNIX version publicly available at that time, is remodeled and studied
for a multi-processor platform. In [39] the cris-case from Information Systems is modeled and studied as well as some ele-
vator systems. In [45,46] different architectures of hospital information systems are modeled and investigated. The modeling
invariably is in Paradigm, the investigations are through arguing and simulation, as at that time a connection with formal
verification was not established yet. These and other examples underpin both applicability and scalability of Paradigm mod-
eling, based on clearly separated collaborations. All this is without formal verification as well as without adaptation. Main
lessons learned are, Paradigm models for large real world systems can be developed; such large systems may range from
purely technical ICT (software) to purely human (business).

From 2006 on, we have published about McPal [28,5,8]: how a Paradigm model, through a special component called
McPal, can adapt itself into a new Paradigm model, on-the-fly of the model’s ongoing dynamicity. In [28] a rather rigid
McPal is used for two consecutive adaptations: from a not so efficient non-deterministic solution for three components
competing for a critical section, via a more efficient non-deterministic solution (with a “smaller” critical section), finally to
a deterministic round robin solution (for the smaller critical section). In [5] the McPal component is rather more flexible
as it can adapt itself too. Moreover, the migration trajectories are formally verified. The migration example is similar to
the [28] example, but the migration is more direct: from the not so efficient non-deterministic solution in one migration
to the more efficient deterministic round robin solution. Model checking is done with mCRL2. Some variants of McPal are
discussed too. In [8] the same McPal is used to migrate from a deterministic round robin solution for a 4-party critical
section problem to a probabilistic solution. Here McPal is achieving this via gradually adding more probabilistic control into
the solution at the cost of the original round robin character. Model checking is done via Prism instead of via mCRL2. From
2008 on, papers [7,9,5,8,10] explain how to translate a Paradigm model into the mCRL2 language. Main lessons learned are,
for Paradigm models self-adaptation is a lazy or just-in-time form of coordination in Paradigm style. Moreover, as Paradigm
models can be translated to process algebra, model checking of Paradigm models can be carried out. In particular, migration
trajectories arising in self-adapting Paradigm models can be formally analyzed through model checking.

Both with respect to migration and with respect to model checking, applicability and scalability are substantially lagging
behind the applicability and scalability of modeling in Paradigm without adaptation and without additional model checking.
For Paradigm modeling with model checking we have made some progress in scalability in [10], as roles and the clear sep-
aration of collaborations at a higher level do facilitate reduction in the state space to be model checked. For the adaptation
we have only a first beginning of understanding the model suites (sequences of consecutive Paradigm models appearing and
disappearing one after another) during the migration trajectories that can be realized by the adaptation.

The split-up in collaborations adds to the scalability of the approach: protocols, capturing component interaction, that
are orthogonal to each other can be addressed more focusedly, namely with respect to the specific roles of the components
involved. By focusing on one specific collaboration at a time only part of the detailed behavior of the component is needed
explicitly, which should lead to smaller state spaces to be built. Further work is needed to assess the potential benefits, in
particular when components are intertwined in many different ways. As in the remaining sections of this paper delegation
of migration coordination is structured according to clearly separated collaborations, we have the impression this is useful
for scalability and so for applicability of the McPal approach, as it is in line with the reasons underpinning Paradigm’s
applicability and scalability for normal coordination, see [43,39,45,46] and the above remarks concerning these papers.

The suitability of Paradigm to model distributed adaptation strategies, extending our earlier centralized adaptation stud-
ies, is discussed in this paper on the dining philosophers example (see also [4]). A deadlock-prone solution of the dining
philosophers problem is taken as a source system, to be migrated to a target solution, both deadlock-free and starvation-
free. Both systems are modeled in Paradigm, as is the migrating from source to target. As typical for dynamic adaptation
in Paradigm, McPal regulates the propagation of new behavior and guides the structural changes in the components and in
their coordination. Seamlessly, parallel to ongoing execution, new behavior is woven into the ongoing behavior, such that
smooth migration is established from as-is behavior (of the source system) via intermediate behavior to to-be behavior (of
the target system). Note, both intermediate and to-be behaviors were originally unknown. All this is characteristic for McPal.
But here, although adding to the complexity of the solution, McPal delegates part of its control to local adaptation managers
McPhil;, i =1, ..., 5, one for each philosopher, while McPal keeps controlling them globally. Thus, we argue, the component-
based character of the Paradigm language allows for modeling distributed adaptation: separate modeling of strategies for
changes of local behavior, coordinated by McPal as system adaptation manager guiding the architectural changes. This re-
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