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We investigate the complexity of satisfiability for one-agent refinement modal logic (RML), 
a known extension of basic modal logic (ML) obtained by adding refinement quantifiers 
on structures. It is known that RML has the same expressiveness as ML, but the 
translation of RML into ML is of non-elementary complexity, and RML is at least doubly
exponentially more succinct than ML. In this paper, we show that RML-satisfiability is 
‘only’ singly exponentially harder than ML-satisfiability, the latter being a well-known
PSPACE-complete problem. More precisely, we establish that RML-satisfiability is complete 
for the complexity class AEXPpol , i.e., the class of problems solvable by alternating Turing 
machines running in single exponential time but only with a polynomial number of 
alternations (note that NEXPTIME ⊆ AEXPpol ⊆ EXPSPACE).1

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modal logics with explicit or implicit propositional quantification Refinement modal logic is a logic with propositional quantifi-
cation. Modal logics augmented with propositional quantifiers, which allow to quantify over subsets of the domain of the 
current model, have been investigated since Fine’s seminal paper [2]. Fine distinguishes three different propositional quan-
tifications, which allow different kinds of model transformations: quantifying over propositionally definable subsets (over 
booleans), quantifying over subsets definable in the logical language (of basic modalities and quantifiers), and quantifying 
over all subsets. Only the first two are, in our modern terms, bisimulation preserving. Propositional quantification can easily 
lead to undecidable logics [2,3]. Undecidability relies on the ability of propositional quantification to dictate the structural 
properties of the underlying model [3]. This has motivated, more recently, the introduction of bisimulation quantified logics 
[4,5,3,6]. In that framework, the quantification is over the models which are bisimilar to the current model except for a 
propositional variable p. This operation is bisimulation preserving, and these logics are decidable.

In [7] the authors propose a novel way of quantifying, namely over modally definable submodels. Unlike the above 
proposals, this not merely involves changing the valuation of a proposition in a subdomain, but restricting the model to that 
subdomain. The setting for these logics is how to quantify over information change. In the logic APAL of [7], an expression 
that we might write as ∃ϕ for our purposes stands for ‘there is a modal formula ψ such that in the submodel restriction to 
the states satisfying ψ it holds that ϕ ’. This logic is undecidable [8].
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Refinement modal logic (RML) [9–11] is a generalization of this perspective to more complex model transformations than 
submodel restrictions. This is achieved by existential and universal quantifiers which range over the refinements of the 
current model. In RML, an expression ∃rϕ stands for ‘there is a refinement wherein it holds that ϕ .’ Given a model and 
a refinement of that model, we say that the two are in the refinement relation. From the atoms/forth/back requirements of 
bisimulation, a refinement (relation) between two given modal structures needs only satisfy atoms and back. Refinement is 
therefore the dual of a simulation that needs only satisfy atoms and forth, and it is more general than model restriction, 
since it is equivalent to bisimulation followed by model restriction. From a syntactic point of view, a refinement formula of 
the form ∃rϕ can be mimicked by an existential bisimulation quantification followed by a relativization of ϕ , that is a simple 
syntactic transformation of ϕ which holds whenever ϕ holds in the outcome of this bisimulation quantification [11]. Just as 
in bisimulation quantified logics we have explicit quantification over propositional variables, refinement quantification as it 
is realized in refinement modal logic is implicit quantification over propositional variables, i.e., quantification over variables 
not occurring in the formula bound by the quantifier.

As an example of a refinement consider the following four rooted (underlined) structures.

With respect to the first model, M , the second one, M ′ , is a model restriction. Model M ′′ is a refinement of M . It is not 
a model restriction. However, it is a model restriction of M ′′′ , a bisimilar copy of M . Refinements have really different prop-
erties, e.g., a formula like ��⊥ ∧ ���⊥ is clearly false in any model restriction of M , but it is true in its refinement M ′′ . 
The root of the original model M satisfies the formula ∃r(��⊥ ∧ ���⊥), where ∃r is the refinement quantifier.

As amply illustrated in [11], refinement quantification has applications in many settings: in logics for games [12,6], it 
may correspond to a player discarding some moves; for program logics [13], it may correspond to operational refinement; 
and for logics for spatial reasoning, it may correspond to subspace projections [14].

Our contribution We now get to the content of this paper and its novel contributions. We focus on complexity issues for 
(one-agent) refinement modal logic [9–11], the extension of (one-agent) basic modal logic (ML) obtained by adding the 
existential and universal refinement quantifiers ∃r and ∀r .2 It is known [10,11] that RML has the same expressivity as 
ML, but the translation of RML into ML is of non-elementary complexity (see Section 6 in [10]) and no elementary upper 
bound is known for its satisfiability problem [11]. In fact, an upper bound in 2EXPTIME has been claimed in [10] by a 
tableaux-based procedure: the authors later concluded that the procedure is sound but not complete [11]. In this paper, 
our aim is to close that gap. We also investigate the complexity of satisfiability for some equi-expressive fragments of RML. 
In particular, we associate with each RML formula ϕ a parameter ϒw(ϕ) corresponding to a slight variant of the classical 
quantifier alternation depth (measured w.r.t. ∃r and ∀r ), and for each k ≥ 1, we consider the fragment RMLk consisting of 
the RML formulas ϕ such that ϒw(ϕ) ≤ k. Moreover, we consider the existential (resp., universal) fragment RML∃ (resp., 
RML∀) obtained by disallowing the universal (resp., existential) refinement quantifier.

In order to present our results, first, we recall some computational complexity classes. We assume familiarity with 
the standard notions of complexity theory [15,16]. We will make use of the levels �EXP

k (k ≥ 1) of the exponential-time 
hierarchy EH, which are defined similarly to the levels �P

k of the polynomial-time hierarchy PH, but with NP replaced 
with NEXPTIME. In particular, �EXP

k corresponds to the class of problems decided by single exponential-time bounded 
Alternating Turing Machines (ATM, for short) with at most k − 1 alternations and where the initial state is existential [15]. 
Note that �EXP

1 = NEXPTIME. Recall that EH ⊆ EXPSPACE and EXPSPACE corresponds to the class of problems decided by 
single exponential-time bounded ATM (with no constraint on the number of alternations) [17]. We are also interested in 
an intermediate class between EH and EXPSPACE, here denoted by AEXPpol , that captures the precise complexity of some 
relevant problems [18,15,19] such as the first-order theory of real addition with order [18,15]. Formally, AEXPpol is the class 
of problems solvable by single exponential-time bounded ATM with a polynomial-bounded number of alternations.3

Our complexity results are summarized in Fig. 1 where we also recall the well-known complexity of ML-satisfiability. For 
the upper bounds, the (technically non-trivial) main step in the proposed approach exploits a “small” size model property: 
we establish that like basic modal logic ML, RML enjoys a single exponential size model property. Note that our approach 
is completely different from the one proposed in [10]. There, a tableaux-based algorithm is given in a game-theoretic 
setting which is sound but not complete. The main reason of the incompleteness is that in the tableaux construction, the 
refinement quantification is just applied to model restrictions of the current “syntactical” model. In our approach instead, we 
use a tableaux construction only to infer a single exponential size model property. In particular, our tableaux construction 

2 Refinement modal logic is called “Future Event Logic” in [10].
3 In Presburger arithmetic there are complexity classes of the form STA( f (n), g(n), h(n)), where S is for Space, T for Time and A for Alternation, and 

where f , g , and h are functions. In that notation, AEXPpol is the class for any f (denoted by *), a g exponential in n and an h polynomial in n. See [20].
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