
Science of Computer Programming 93 (2014) 65–85

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

On the use of feature-oriented programming for evolving
software product lines — A comparative study
Gabriel Coutinho Sousa Ferreira a, Felipe Nunes Gaia a, Eduardo Figueiredo b,
Marcelo de Almeida Maia a,∗

a Federal University of Uberlândia, Brazil
b Department of Computer Science, Federal University of Minas Gerais, Brazil

h i g h l i g h t s

• We provide an open benchmark for the analysis of modularity in evolving SPLs.
• We provide a quantitative and qualitative evaluation of SPL variability mechanisms.
• FOP and DP have shown better adherence to the Open–Closed Principle than CC.
• In general, FOP was more effective tackling feature modularity degeneration.

a r t i c l e i n f o

Article history:
Received 15 February 2012
Received in revised form 7 October 2013
Accepted 29 October 2013
Available online 15 November 2013

Keywords:
Software product lines
Feature-oriented programming
Variability management
Design patterns
Conditional compilation

a b s t r a c t

Feature-oriented programming (FOP) is a programming technique based on composition
mechanisms, called refinements. It is often assumed that feature-oriented programming
is more suitable than other variability mechanisms for implementing Software Product
Lines (SPLs). However, there is no empirical evidence to support this claim. In fact, recent
research work found out that some composition mechanisms might degenerate the SPL
modularity and stability. However, there is no study investigating these properties focusing
on the FOP composition mechanisms. This paper presents quantitative and qualitative
analysis of how feature modularity and change propagation behave in the context of two
evolving SPLs, namely WebStore and MobileMedia. Quantitative data have been collected
from the SPLs developed in three different variability mechanisms: FOP refinements,
conditional compilation, and object-oriented design patterns. Our results suggest that FOP
requires few changes in source code and a balanced number of added modules, providing
better support than other techniques for non-intrusive insertions. Therefore, it adheres
closer to the Open–Closed principle. Additionally, FOP seems to be more effective tackling
modularity degeneration, by avoiding feature tangling and scattering in source code, than
conditional compilation and design patterns. These results are based not only on the
variability mechanism itself, but also on careful SPL design. However, the aforementioned
results are weaker when the design needs to cope with crosscutting and fine-grained
features.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software Product Lines (SPLs) [17] are known to enable large scale reuse across applications that share a similar domain.
The potential benefits of SPLs are achieved through a software architecture designed to increase reuse of features in

∗ Corresponding author. Tel.: +55 3432394306.
E-mail addresses: gabriel@mestrado.ufu.br (G.C. Sousa Ferreira), felipegaia@mestrado.ufu.br (F.N. Gaia), figueiredo@dcc.ufmg.br (E. Figueiredo),

marcmaia@facom.ufu.br (M. de Almeida Maia).

0167-6423/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.10.010

http://dx.doi.org/10.1016/j.scico.2013.10.010
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.10.010&domain=pdf
mailto:gabriel@mestrado.ufu.br
mailto:felipegaia@mestrado.ufu.br
mailto:figueiredo@dcc.ufmg.br
mailto:marcmaia@facom.ufu.br
http://dx.doi.org/10.1016/j.scico.2013.10.010


66 G.C. Sousa Ferreira et al. / Science of Computer Programming 93 (2014) 65–85

several SPL products. There are common features found on all products of the product line (known as mandatory features)
and variable features that allow distinguishing between products in a product line (generally represented by optional or
alternative features). Variable features define points of variation and their role is to permit the instantiation of different
products by enabling or disabling specific SPL functionality.

As in any software life cycle, changes in SPLs are expected andmust be accommodated [30].When it comes to SPLs, these
changes have even more impact, since changes to attend new stakeholder requests [17], may affect several products. In an
ideal scenario, the introduction of new features on an SPL should be conducted by inserting components that encapsulate
new or enhanced features [11], minimizing ripple effects of changes.

Variability management is a key factor to be considered when evolving SPLs. Several mechanisms, whether annotative
or compositional [34], support variability management. Examples of variability mechanisms are FOP refinements [12,14],
conditional compilation [2,5], and object-oriented design patterns [27]. To be considered effective, these mechanisms
must guarantee the SPL architecture stability and, at the same time, facilitate future changes. In order to ensure these
requirements, the variability mechanisms should minimize changes and should not degenerate modularity. In other words,
variability mechanisms should support non-intrusive and self-contained changes that favor insertions and do not require
deepmodifications in existent components. These requirements are related to the Open–Closed principle [42], which states
that ‘‘software should be open for extension, but closed for modification’’. This principle can be achieved with mechanisms
that add new artifacts to extend the system functionality, but minimize the amount of modifications in current code.

Our work targets to find out how variability mechanisms behave in terms of modularity and change propagation on
specific SPL change scenarios. In this context, this paper presents two case studies that evaluates comparatively three
mechanisms for implementing variability on evolving software product lines: conditional compilation (CC), object-oriented
design patterns (DP) and feature-oriented programming (FOP). This investigation extends our preliminary work [22] and
focuses on the evolution of two software product lines, called WebStore and MobileMedia (Section 3). We choose these
SPLs because they were available to us and have been used in previous studies with similar purpose [16,24]. Altogether, we
considered five versions of WebStore SPL and seven versions of MobileMedia SPL.

In this study, we analyzed and compared the implementation of variability mechanisms to evolve two SPLs, using a
pure FOP language (Jak) [14] and other two OO-based programming techniques. This work evaluated the compositional
mechanisms available in FOP by using the other two variability techniques as baseline. The SPL implementation assessment
was based on modularity and change propagation metrics recurrently used to quantify separation of concerns and change
impacts [16,18,26,47,52]. Moreover, our study contributes to build up a body of knowledge that allows the comparison of
AHEAD and other FOP or non-FOP approaches.

This paper extends the previous SBLP paper with two major contributions, as follows.

• A new case study using the MobileMedia SPL; our preliminary work relies only on the WebStore SPL. MobileMedia is
larger thanWebStore not only in terms of number of components but alsowith respect to the variety of change scenarios.
Therefore, this new case study helped us to (i) increase the results reliability, (ii) come up with new findings, and (iii)
reduce threats to study validity.

• We also provide more detailed data analysis and a deeper discussion about the new findings. The analyses, that now
considered data collected from both SPLs, reinforced the findings from the first case study and revealed several new
ones. For instance, based on the MobileMedia case study, we observed that the SoC (Separation of Concerns) metrics tend
to be less discriminative on larger systems.

Therefore, the novel contributions of this extended paper are threefold.
• The development of public benchmark data with 113,152 data points concerning four feature modularity metrics

extracted from two SPLs implemented with three different variability mechanisms in 12 different versions.
• The qualitative and quantitative analysis framework for change propagation and feature modularity metrics that can be

reused in further replications of this study.
• Discussion and observations based on the obtained data about the role and the singular applicability of each variability

mechanism in the context of evolving software product lines.

The rest of this paper is organized as follows. In Section 2, the implementation mechanisms used in the case study are
revisited. Section 3 presents the study setting, including the target SPLs and their respective change scenarios. Section 4
analyzes change measures through different releases. In Section 5, the modularity of WebStore and MobileMedia SPLs are
quantitatively analyzed and discussed. Section 6 presents the threats to validity of this study. Section 7 presents related
work. Finally, Section 8 concludes this paper.

2. Variability mechanisms for software product lines

This section revisits some concepts about the three techniques evaluated in this study: conditional compilation (CC),
object-oriented design patterns (DP) and feature-oriented programming (FOP). We choose conditional compilation and
design patterns because these are the state-of-the-practice options adopted in SPL industry [5,42]. Although there are other
approaches that could be used to represent the feature-oriented paradigm [43], we chose AHEAD because it has beenwidely
studied [8,10,12,14,34].



Download English Version:

https://daneshyari.com/en/article/433784

Download Persian Version:

https://daneshyari.com/article/433784

Daneshyari.com

https://daneshyari.com/en/article/433784
https://daneshyari.com/article/433784
https://daneshyari.com

