Simple dynamics on graphs

Maximilien Gadouleau ${ }^{\mathrm{a}, 1}$, Adrien Richard ${ }^{\mathrm{b}, *, 1}$
${ }^{\text {a }}$ School of Engineering and Computing Sciences, Durham University, UK
${ }^{\text {b }}$ Laboratoire I3S, CNRS \& University of Nice Sophia Antipolis, France

A R TICLE IN F O

Article history:

Received 16 March 2015
Received in revised form 8 December 2015
Accepted 8 March 2016
Available online 10 March 2016
Communicated by N. Ollinger

Keywords:

Discrete dynamical system
Boolean network
Interaction graph
Fixed point

Abstract

Can the interaction graph of a finite dynamical system force this system to have a "complex" dynamics? In other words, given a finite interval of integers A, which are the signed digraphs G such that every finite dynamical system $f: A^{n} \rightarrow A^{n}$ with G as interaction graph has a "complex" dynamics? If $|A| \geq 3$ we prove that no such signed digraph exists. More precisely, we prove that for every signed digraph G there exists a system $f: A^{n} \rightarrow A^{n}$ with G as interaction graph that converges toward a unique fixed point in at most $\left\lfloor\log _{2} n\right\rfloor+2$ steps. The boolean case $|A|=2$ is more difficult, and we provide partial answers instead. We exhibit large classes of unsigned digraphs which admit boolean dynamical systems which converge toward a unique fixed point in polynomial, linear or constant time.

(C) 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $A=\{0,1, \ldots, s\}$ be a finite integer interval, and let n be a positive integer. A finite dynamical system is a function

$$
f: A^{n} \rightarrow A^{n}, \quad x=\left(x_{1}, \ldots, x_{n}\right) \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) .
$$

If $|A|=2$, such a system is called boolean network. Finite dynamical systems, and boolean networks in particular, have many applications: they have been used to model gene networks [16,25,26,15], neural networks [17,14,7,8], social interactions $[19,12]$ and more (see [27,10]).

The structure of a finite dynamical system f can be represented via its interaction graph G, which roughly describes the dependencies between the variables of the systems (depending on the context, this graph is sometimes called dependency graph, influence graph or regulatory graph). More formally, G is a digraph with vertex set $\{1, \ldots, n\}$ and an arc from j to i if $f_{i}(x)$ depends on x_{j}. An arc from j to i can also be labeled by a sign indicating whether $f_{i}(x)$ is an increasing (positive sign), decreasing (negative sign), or non-monotone (zero sign) function of x_{j}. This is commonly the case when modeling gene networks, since a gene can typically either activate (positive sign) or inhibit (negative sign) another gene.

In many contexts, as in molecular biology, the interaction graph is known-or at least well approximated-, while the actual function f is not. A natural and difficult question is then the following: what can be said on system $f: A^{n} \rightarrow A^{n}$ according to its interaction graph only? Among the many dynamical properties that can be studied, fixed points are crucial

[^0]because they represent stable states [21,27,8]. As such, they are arguably the property which has been the most thoroughly studied (see [21,23,20,1,11,5] and the references therein).

In this paper, we are interested in "simple" dynamics, considering that a dynamics is simple if it describes a fast convergence toward a unique fixed point. Formally, f converges towards a unique fixed point in k steps if f^{k} is a constant. In that case, we say that f is a nilpotent function and the minimal k such that f^{k} is a constant is called the class of f. Also, we say that a signed or unsigned digraph G admits a function f if G is the signed or unsigned version of the interaction graph of f.

A fundamental result of Robert is the following: if the interaction graph of $f: A^{n} \rightarrow A^{n}$ is acyclic then f is a nilpotent function of class at most n [21]. This shows that "simple" interaction graphs imply "simple" dynamics. But conversely, does "complex" interaction graphs imply "complex" dynamics? More precisely, which are the interaction graphs that can force a system to have a non-simple dynamics? This is the question we study in this paper.

We first study the non-boolean case $|A| \geq 3$ in Section 3. Essentially, we show that every signed digraph G on n vertices admits a nilpotent function $f: A^{n} \rightarrow A^{n}$ of class at most $\left\lfloor\log _{2} n\right\rfloor+2$. Furthermore, if $|A|>3$ then the upper-bound on the class of f can be reduced to only 2 . Hence, in the non-boolean case, we cannot conclude that a system f has a non-simple dynamics from its interaction graph only.

We then study the boolean case $|A|=2$ in Section 4, which is more difficult. First, not all digraphs admit a boolean nilpotent function. The directed cycle is the most simple example, and it seems very difficult to characterize the digraphs that admit a boolean nilpotent function. Thus we provide partial answers. We exhibit large classes of unsigned digraphs which admit boolean dynamical systems which converge toward a unique fixed point in polynomial, linear or constant time. In particular, we prove that if G has a primitive spanning strict subgraph then G admits a boolean nilpotent function of class at most $n^{2}-2 n+3$. We also prove that if G is strongly connected and if the out-neighborhood of some vertex of G induces a non-acyclic digraph, then G admits a boolean nilpotent function f of class at most $2 n-1$. Besides, we prove that if G is a loop-less connected symmetric digraph with at least three vertices, then G admits a boolean nilpotent function f of class 3 . We have not been able to prove or disprove the following assertion: there exists a constant c such that, for every digraph G with n vertices, if G admits a boolean nilpotent function, then G admits a boolean nilpotent function of class at most cn .

2. Preliminaries

The vertex set of a digraph G is denoted $V(G)$ and its arc set, which is a subset of $V(G) \times V(G)$, is denoted $A(G)$. The in-neighborhood of a vertex v is denoted $G(v)$; this is an non-usual but very convenient notation for our purpose. Other notations and terminologies on digraphs are usual and consistent with [2]. Paths and cycles of are always directed, without repetition of vertices, and seen as subgraphs. The subgraph of G induced by a set of vertices $I \subseteq V(G)$ is denoted $G[I]$. If X is an arc, a vertex, a set of arcs, or a set of vertices, then $G \backslash X$ is the subgraph obtain from G by removing X or the elements in X. We say that G is strong if G is strongly connected. A strongly connected component I (strong component for short) of G is initial if there is no arc (u, v) with $u \notin I$ and $v \in I$. If G and G^{\prime} are two digraphs, then $G \cup G^{\prime}$ is the digraph with vertex set $V(G) \cup V\left(G^{\prime}\right)$ and arc set $A(G) \cup A\left(G^{\prime}\right)$. A digraph on a set V is a digraph with vertex set V. A tree is a digraph in which all the vertices have in-degree one, excepted one vertex, called the root, which has in-degree zero. A forest is a digraph in which all the connected components are trees. A loop is an arc from a vertex to itself. A vertex is linear if it has a unique in-neighbor and a unique out-neighbor.

A signed digraph G consists in a digraph, denoted $|G|$, together with a map that labels each arc of $|G|$ by a positive, negative or null sign. We say that an arc is signed if it is positive or negative, and unsigned otherwise. The digraph obtained from G by keeping only positive arcs is denoted G^{+}. We define similarly G^{-}and G^{0}. The digraph obtained by keeping only signed arcs is denoted $G^{ \pm}$(thus $G^{ \pm}=G^{+} \cup G^{-}$). A cycle of G is positive (resp. negative) if it contains an unsigned arc or an even (resp. odd) number of negative arcs. In the following, all graph-theoretic concepts that do not involve signs are applied on G or $|G|$ indifferently.

Let A be a finite interval of integers, let n be a positive integer and $[n]=\{1, \ldots, n\}$. A function over A is a map $f: A^{n} \rightarrow$ A^{n}. A function over $\{0,1\}$ is a boolean function. As usual, for all $k \in \mathbb{N}$ we set $f^{k}=\operatorname{id}$ if $k=0$ and $f^{k}=f \circ f^{k-1}$ otherwise. If f is any function, we write $f=\mathrm{cst}$ to mean that f is a constant. In the following, functions are often defined using conjunctions (\wedge) disjunctions (\vee) and exclusive disjunctions (\oplus). If $I \subseteq[n]$ and $x \in\{0,1\}^{I}$ then, by convention, $\vee_{i \in I} x_{i}=$ $\oplus_{i \in I} x_{i}=0$ and $\wedge_{i \in I} x_{i}=1$ if I is empty, and $\vee_{i \in I} x_{i}=\oplus_{i \in I} x_{i}=\wedge_{i \in I} x_{i}=x_{i}$ if $I=\{i\}$.

Definition 1. A function f over A is nilpotent if there exists $k \in \mathbb{N}$ such that f^{k} is constant. If f is nilpotent, then the smallest k such that f^{k} is a constant is the class of f.

Definition 2. The interaction graph of a function f over A is the signed digraph $G(f)$ on [n] with arcs defined as follows: for all $j, i \in[n]$, there is an $\operatorname{arc}(j, i)$ if $f_{i}(a) \neq f_{i}(b)$ for some $a, b \in A^{n}$ such that $a_{j}<b_{j}$ and $a_{k}=b_{k}$ for all $k \neq j$; and an $\operatorname{arc}(j, i)$ is positive if $f_{i}(a) \leq f_{i}(b)$ for all such a and b, negative if $f_{i}(a) \geq f_{i}(b)$ for all such a and b, and null otherwise.

Hence, $G(f)$ has an arc (j, i) if and only if $f_{i}(x)$ depends essentially on x_{j}, and the sign of an arc (i, j) is positive (resp. negative) if an only if for every fixed $x_{k}, k \neq j, f_{i}(x)$ is a non-decreasing (resp. non-increasing) function of x_{j}.

https://daneshyari.com/en/article/433790

Download Persian Version:

https://daneshyari.com/article/433790

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: m.r.gadouleau@durham.ac.uk (M. Gadouleau), richard@unice.fr (A. Richard).
 ${ }^{1}$ This work is partially supported by CNRS and Royal Society through the International Exchanges Scheme grant Boolean networks, network coding and memoryless computation.

