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We prove a general lower bound on the size of switching-and-rectifier networks over any 
semiring of zero characteristic, including the (min, +) semiring. Using it, we show that the 
classical dynamic programming algorithm of Bellman, Ford and Moore for the shortest s-t
path problem is optimal, if only Min and Sum operations are allowed.
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1. Introduction

Dynamic programming algorithms for discrete minimization problems are actually (recursively constructed) circuits or 
switching networks over the (min, +) semiring, also known as the tropical semiring. So, in order to understand the limita-
tions of dynamic programming, we need lower-bound arguments for tropical circuits and switching networks.

In this paper, we present such an argument for tropical switching networks over the (min, +) semiring. These networks 
correspond to dynamic programming algorithms solving minimization problems f :Nn →N of the form

f (x1, . . . , xn) = min
a∈A

n∑
i=1

aixi , (1)

where A ⊂N
n is a finite set of nonnegative integer vectors a = (a1, . . . , an). We prove that every tropical switching network 

solving f must have at least f (1, . . . , 1) · c( f ) edges, where c( f ) is the smallest size of a subset S ⊆ [n] = {1, . . . , n} such 
that, for every vector a ∈ A, there is a position i ∈ S with ai �= 0 (Sect. 3). We then demonstrate this general lower bound 
by two almost optimal lower bounds.

Shortest paths Our first application—which was also our main motivation—concerns the classical dynamic programming 
algorithm of Ford [1], Bellman [2], and Moore [3] for the shortest s-t path problem. This algorithm actually solves the 
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shortest k-walk problem: given an assignment of nonnegative weights to the edges of the complete graph on [n] = {1, . . . , n}, 
find the minimum weight of a walk of length k from node s = 1 to the node t = n. Recall that a walk is an alternating 
sequence of nodes and connecting edges. A walk can travel over any node (except s and t) and any edge (including loops) 
any number of times. A path is a walk which cannot travel over any node more than once. The length of a walk (or path) is 
its number of edges, counting repetitions.

In a related shortest k-path problem, the goal is to compute the minimum weight of an s-t path of length at most k. 
Note that, if we give zero weight to all loops, then these two problems are equivalent. This holds because weights are 
nonnegative, every s-t walk of length k contains an s-t path of length ≤ k, and every s-t path of length ≤ k can be extended 
to an s-t walk of length k by adding loops.

The Bellman–Ford algorithm gives a tropical switching network of depth k, with kn nodes and kn2 edges solving the 
k-walk problem, and hence, also the shortest k-path problem. By combining our general lower bound with a result of Erdős 
and Gallai [4] about the maximal number of edges in graphs without long paths, we show (Theorem 1) that this algorithm 
is almost optimal: at least about kn(n − k) edges are also necessary in any tropical switching network solving the k-walk 
problem. We also show that the same number of edges is necessary even in boolean switching networks, if their depth is 
restricted to k (Theorem 4).

Matrix multiplication Our next application concerns the complexity of matrix multiplication over the (min, +) semiring. 
Kerr [5] has shown that any (min, +) circuit, simultaneously computing all the n2 entries of the product of two n × n ma-
trices over the (min, +) semiring, requires �(n3) gates. This showed that the dynamic programming algorithm of Floyd [6]
and Warshall [7] for the all-pairs shortest paths problem is optimal, if only Min and Sum operations are allowed. Later, 
Pratt [8], Paterson [9], and Mehlhorn and Galil [10] independently proved the same lower bound even over the boolean 
semiring.

These lower bounds, however, do not imply the same lower bound for the single-output version Mn of this problem: 
compute the sum of all entries of the product matrix. Using our general lower bound, we show that the minimum number 
of switches in a tropical switching network solving Mn over the (min, +) semiring is 2n3 (Theorem 3).

Remark 1. Let us stress that we are interested in proving lower bounds for problems that have very small switching net-
works. In both problems above, we have N = �(n2) variables. These problems have tropical switching networks of sizes 
O (kN) and O (N3/2), respectively. Are these upper bounds tight?

Using known lower-bound arguments for monotone boolean and arithmetic circuits, large (even exponential) lower 
bounds can be derived for tropical circuits solving some minimization problems such as the minimum weight spanning 
tree, or the minimum weight perfect matching problem (see, e.g. [11, Theorem 30] and references herein). However, these 
arguments are too “generous” and fail for problems that have small tropical complexity.

Fortunately, there is a classical lower-bound argument of Shannon, Moore and Markov allowing one to also prove small 
lower bounds for monotone boolean switching networks. By an extension of this argument to tropical networks, we will 
show that the two upper bounds above are indeed optimal.

In technical terms, none of the proofs in this paper is complicated. Our main contribution is a somewhat unexpected 
connection between different topics—some central dynamic programming algorithms, tropical mathematics, extremal graph 
theory, and classical lower bounds for monotone switching networks.

2. Polynomials and their switching networks

Let (R, +, ×, 0, 1) be a semiring with “sum” (+) and “product” (×) operations, additive identity (“zero element”) 0, and 
multiplicative identity 1 (“unit element”). We only consider commutative semirings, and assume the “annihilation” property 
x × 0 = 0 of the zero element. Recall that a (multivariate) polynomial over R is a formal expression of the form

f (x1, . . . , xn) =
∑
a∈A

ca

n∏
i=1

xai
i , (2)

where A ⊂ N
n is a finite set of nonnegative integer vectors, and ca ≥ 1 are integer coefficients. The coefficients ca are not 

necessarily elements of R: they only indicate the number of times the corresponding monomials appear in the polynomial. 
The degree of a monomial 

∏n
i=1 xai

i is the sum a1 + a2 + · · · + an of its exponents.
Every polynomial f defines the function f : Rn → R , whose value f (r) = f (r1, . . . , rn) is obtained by substituting ele-

ments ri ∈ R for xi in f . Different polynomials may define the same function. Moreover, over different semirings R , these 
functions may be different. For example, in the boolean semiring, we have R = {0, 1}, x + y := x ∨ y, x × y := x ∧ y, 0 := 0, 
and 1 := 1, whereas in the tropical (min, +) semiring, we have R = N ∪ {+∞}, x + y := min{x, y}, x × y := x + y, 0 := +∞, 
and 1 := 0. Hence, over these two semirings, the functions defined by the polynomial (2) are, respectively,

f =
∨
a∈A

∧
i : ai �=0

xi and f = min
a∈A

n∑
i=1

ai xi .
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