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Biologically inspired computation has been recently used with mathematical models to-
wards the design of new synthetic organisms. In this work, we use Pareto optimality to 
optimize these organisms in a multi-objective fashion. We infer the best knockout strate-
gies to perform specific tasks in bacteria, which involve concurrent maximization/mini-
mization of multiple functions (codomain) and optimization of several decision variables 
(domain). Furthermore, we propose and exploit a mapping between the metabolism and 
a register machine. We show that optimized bacteria have computational capability and 
act as molecular Turing machines programmed using a Pareto optimal solution. Finally, 
we investigate communication between bacteria as a means to evaluate their computa-
tional capability. We report that the density and gradient of the Pareto curve are useful 
tools to compare models and understand their structure, while modelling organisms as 
computers proves useful to carry out computation using biological machines with specific 
input–output conditions, as well as to estimate the bacterial computational effort for spe-
cific tasks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, computer science and mathematics have been widely used to understand the behavior of biological 
systems or to analyze high throughput data. There are different methods to represent a biological system, for instance by 
using a system of equations. In metabolic systems, each variable represents the variation of a metabolite concentration in 
a compartment, in a dynamic or steady state, where the metabolite concentration depends on material fluxes that enter 
or leave the compartment. Each flux can be also modelled by using kinetics parameters. Usually, these systems contain a 
large number of equations (differential or algebraic) and solving the problem analytically is often very hard, leading to the 
increasing use of numerical methods. Additionally, the advent of high throughput data in medicine requires computational 
techniques for data mining. Biologically inspired computation has been used to infer mathematical models, parameter values, 
or to capture states and transitions at the molecular level [1].

Metabolic engineering consists of optimizing genetic and regulatory processes within cells to increase the cell production 
of certain substances. The in silico analysis is the first step for designing a new synthetic organism. Escherichia coli is 
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one of the most studied organisms in biology, as well as in synthetic biology and metabolic engineering. Researchers and 
biotechnologists focused their efforts on the study of its metabolic network, since it is simple and its strain is easy to 
manipulate in laboratory. In particular, in the last ten years, Palsson and colleagues have published several works about the 
E. coli network and its modelling. In 2000, Edwards and Palsson [2] published the first genome-scale metabolic network of 
the K12-MG1655 E. coli, composed of 627 reactions, 438 metabolites and 660 genes. By considering the steady-state, the 
flux balance analysis (FBA) is used to solve the system with a linear programming approach, obtaining the flux distribution 
in the metabolic network. The fluxes distribution depends on the environment, for instance the glucose feed or the presence 
of oxygen, and on genetic manipulations (knockouts). More recently, the genome-scale reconstruction of this organism has 
been augmented to include 904 genes, 625 metabolites and 931 reactions [3], then 1260 genes, 1039 metabolites and 
2077 reactions [4] and finally 1366 genes, 1136 metabolites and 2251 reactions [5]. FBA is a useful framework in that it 
allows to understand the behavior of large networks and perform the knockout analysis at a low computational cost [6]. 
FBA-based approaches reveal more efficient than other mathematical modelling techniques, such as those based on ordinary 
differential equations [7], at tackling genome-scale metabolic networks, which have been extensively used to characterize 
energy production in cells [8], and to design synthetic pathways in silico (e.g. for production of biofuels [9]).

In this research work, we analyze two genome-scale metabolic networks of E. coli. By using a multi-objective optimiza-
tion method called Genetic Design by Multi-objective Optimization (GDMO) [6], we maximize several pairs of biological 
functions, such as acetate production and biomass formation. The biomass reaction is scaled so that the flux through it is 
equal to the exponential growth rate of the organism. In the optimization procedure, we search for the best genetic strate-
gies that maximize the selected objectives. The results are represented in the Pareto curve. The area under the curve, the 
extension and the points of the front, the knees and the jumps are features that summarize the characteristic phenotype of 
the organism, and are useful tools to compare different models or different organisms.

Further, we propose a mapping between a living organism and the von Neumann architecture, where the metabolism 
executes reactions mapped to instructions of a Turing machine. A Boolean string found by GDMO represents the optimal 
genetic knockout strategy and also the executable program stored in the “memory” of the organism. We adopt our frame-
work to investigate scenarios of communication among bacteria, gene duplication, and lateral gene transfer events. Finally, 
we use this mapping to estimate the computational effort for a specific metabolic task, and the computational capability of 
the organism as function of communication outcomes, e.g. gene duplication events.

The remainder of the article is organized as follows. In Section 2, we review Pareto optimality and the main ideas under-
lying GDMO [6]. Then, we report a comparison between two different models used to represent the E. coli network. In the 
FBA framework, we adopt the GDMO algorithm to optimize genetic manipulations in order to maximize several biological 
functions. We also perform the sensitivity and robustness analyses [10] for the two models, and rank nutrient metabo-
lites according to their influence on the output (the distribution of fluxes). Additionally, based on Pareto genetic strategies, 
we infer neutral, trade off and destructive manipulations. In Section 3, we introduce a relation between computation and 
metabolism explained through a formalism that associates the structure of any bacterium with a von Neumann architecture. 
In Section 4, we discuss this mapping thinking of the metabolism as a Minsky register machine with universal computational 
capability. In Sections 5–6, we discuss the effect that various events (e.g. motility, communication, gene duplication) may 
have on the computation performed by a bacterium. We also remark the changes occurring in the computation capability 
as a consequence of a duplication event followed by a mutation.

2. Optimization of gene sets

A Pareto front is the set of points in a given objective space such that there does not exist any other point that dominates 
them in all the objectives. It is obtained as a result of a multi-objective optimization technique needed when a system 
(a given phenotype) cannot be optimal at all the tasks it performs, and particularly when tasks are in contrast with each 
other [11]. For instance, given the task of optimizing an organism, the Pareto front allows to maximize or minimize two or 
more target metabolites, thus obtaining new optimal strains specialized in many aims simultaneously.

Formally, given r objective functions f1, . . . , fr to maximize/minimize, the problem of optimizing in a multi-objective 
fashion can be rephrased as the problem of finding a vector x∗ that satisfies all the constraints and optimizes the vector 
function f (x) = ( f1(x), f2(x), . . . , fr(x))ᵀ , where x is the variable (vector) to be optimized in the search space. Without 
loss of generality, in the definition all the functions are maximized (however, minimizing a function f i is equivalent to 
maximizing − f i ). The output of a multi-objective routine is a set of Pareto optimal points, which constitute the Pareto front. 
A solution x∗ in the search space X is Pareto optimal if �x ∈ X such that f (x) dominates f (x∗), or more formally if

�x ∈ X s.t. f i(x) > f i
(
x∗), ∀i = 1, . . . , r, (1)

where f is the vector of r objective functions that have to be maximized in the objective space. Since the multiple targets 
f i are usually in conflict with each other, the term optimizing means finding all the solutions that represent a trade-off for 
the designer.

The many-objective Pareto optimality is a useful and powerful tool to understand the phenotype of organisms in different 
environmental conditions and genetic strategies. By adopting a trade-off strategy, an organism is able to maximize/minimize 
simultaneously several biotechnological targets, e.g. the output of the computation it carries out. In the Pareto fronts and 
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