REVIEW

ENDOGENOUS MORPHINE AND ITS METABOLITES IN MAMMALS: HISTORY, SYNTHESIS, LOCALIZATION AND PERSPECTIVES

A. LAUX-BIEHLMANN, J. MOUHEICHE, J. VÉRIÈPE AND Y. GOUMON*

Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR3212 and Université de Strasbourg, F-67084 Strasbourg, France

Abstract—Morphine derived from *Papaver somniferum* is commonly used as an analgesic compound for pain relief. It is now accepted that endogenous morphine, structurally identical to vegetal morphine—alkaloid, is synthesized by mammalian cells from dopamine. Morphine binds mu opioid receptor and induces antinociceptive effects. However, the exact role of these compounds is a matter of debate although different links with infection, sepsis, inflammation, as well as major neurological pathologies (Parkinson's disease, schizophrenia) have been proposed. The present review describes endogenous morphine and morphine derivative discovery, synthesis, localization and potential implications in physiological and pathological processes. © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: morphine, morphine-glucuronide, dopamine, opioid receptor, analgesia.

Contents

General introduction and nomenclature	96
Endogenous opiates: a history of their discovery	96
Discovery of endogenous morphine-like compounds	96
Identification of endogenous opiates	96
Evidence of de novo morphine biosynthesis in m	am-
mals	98

*Corresponding author.

E-mail address: yannick.goumon@inserm.u-strasbg.fr (Y. Goumon). *Abbreviations*: 4-HPAA, 4-hydroxyphenylacetaldehyde; 4-HPP, 4-hydroxyphenylpyruvate; AADC, aromatic L-amino acid decarboxylase; COMT, catechol-O-methyltransferase; CSF, cerebrospinal fluid; CYP2D6, cytochrome P450 2D6; DOPAL, 3,4-dihydroxyphenylacetaldehyde; DOR, delta opioid receptor; EM, endogenous morphine; EMM, endogenous morphine metabolites; HPLC, high-performance liquid chromatography; KOR, kappa opioid receptor; M3G, morphine-3-glucuronide; M3S, morphine-3-sulfate; M6G, morphine-6-glucuronide; M6S, morphine-6-sulfate; MAO, monoamine oxidase; MD2, myeloid differentiation protein 2; MLC, morphine-like compound; MOR, mu opioid receptor; MS, mass spectrometry; NCS, norcoclaurine synthase; PNMT, phenylethanolamine N-methyltransferase; RIA, radioimmunoassay; TH, tyrosine hydroxylase; THP, tetrahydropapaveroline; TLR4, toll-like receptor 4; TYDC, tyrosine decarboxylase; TyrAT, tyrosine aminotransferase; UGT, UDP-glucuronosyl-transferase enzymes.

i ne biosynthetic pathway of endogenous opiates in mamm	
comparison with plants	98
L-tyrosine to dopamine	98
The formation of norlaudanosoline and norcoclaurine	98
Three O-methylation steps to form (R)-reticuline	100
(R)-reticuline to thebaine	100
Thebaine to morphine: two parallel pathways	100
Conclusion: conservation throughout evolution	100
Investigation of new endogenous opiate compounds of	inter-
est	100
Precursors	100
Morphine catabolites	101
In humans	101
In other mammals	103
Localization of endogenous opiates in mammals	103
The central nervous system	103
Endogenous morphine in astrocytes	103
Endogenous morphine in GABAergic cells	103
In the periphery	105
Different cellular partners may be involved in endoge	enous
opiate biosynthesis	106
Is EM biosynthesis restricted to catecholamir	nergio
cells?	106
The precursor-uptake hypothesis	106
Localization of enzymes involved in endogenous	mor-
phine biosynthesis	107
What are the roles of endogenous opiates?	107
Endogenous opiate levels	107
At the periphery: stress and immune responses	107
Endogenous opiates in the adrenal medulla	107
Endogenous opiates in the immune system	107
Proposed roles in the CNS	108
Do endogenous opiates act as neurotransmitte	rs or
neuromediators?	108
Endogenous opiates and control of nociception	108
Endogenous opiates and memory	108
Endogenous opiates and addiction	108
Endogenous opiates, neurogenesis and structural	plas-
ticity	109
Endogenous opiates and neuroinflammation	109
Endogenous opiates and CNS pathologies	109
Schizophrenia	109
A "hypermorphinergic" pathology?	109
Endogenous morphine, schizophrenia and nod	cicep-
tion	110
Parkinson's disease	110
Conclusion	110
Acknowledgements	110
References	110

GENERAL INTRODUCTION AND NOMENCLATURE

In the early 1950s, the presence of specific morphine-binding receptors was hypothesized on the basis of morphine's analgesic effects. In the 1970s, three different receptors for opioid and opiate compounds were discovered: the Mu (μ), Delta (δ) and Kappa (κ) opioid receptors (MOR, DOR and KOR, respectively) (Pert et al., 1973; Pert and Snyder, 1973). More recently, a fourth opioid receptor named nociceptin/ orphanin FQ (NOR) was cloned. These opioid receptors have seven transmembrane domains coupled to G proteins (for review: Kieffer and Evans, 2002, 2009; Trescot et al., 2008; Dietis et al., 2011; Al-Hasani and Bruchas, 2012; Feng et al., 2012).

The presence of opioid receptors has led to the characterization of several endogenous ligands called opioids due to their peptidic nature: enkephalins (Hughes et al., 1975a,b; Simantov and Snyder, 1976), β-endorphin (Bradbury et al., 1976; Graf et al., 1976; Lazarus et al., 1976; Li and Chung, 1976; Li et al., 1976), dynorphin (Cox et al., 1975; Goldstein et al., 1979; Lowney et al., 1979), nociceptin/orphanin FQ (Meunier et al., 1995; Reinscheid et al., 1995) and endomorphins (Hackler et al., 1997; Zadina et al., 1997). In addition to endogenous opioid peptides, endogenous morphine-like molecules, which are known as endogenous opiates due to their alkaloid nature have been discovered (Gintzler et al., 1976a,b; Blume et al., 1977; Shorr et al., 1978). Nevertheless, these molecules remain unfamiliar to most scientists, with only a small number of laboratories focusing on this particular research area. The data on endogenous opiates are scattered among the thousands of articles on "exogenous morphine" and endogenous peptides. Furthermore, confusion arises when scientists use the term "opiates" instead of "opioids" for endogenous opioid peptides. Because no clear consensus exists, the following conventions will be used in this review: "opioids" will refer to peptides having an affinity for opioid receptors, whereas "opiates" will refer to natural or synthetic morphine-derived alkaloids (morphine, codeine, morphine-alucuronides...).

The present review summarizes the findings from the available literature on endogenous opiates (endogenous morphine and endogenous morphine metabolites). Their history, synthesis in mammals, tissue/cellular localization and potential functions in physiological and pathological states will be addressed in the following paragraphs. We will also discuss exciting fundamental and therapeutic perspectives that have recently emerged from cutting-edge research.

Endogenous opiates: a history of their discovery

Discovery of endogenous morphine-like compounds. In 1903, the French scientist Dr. Mavrojannis made the observation that morphine injections in rats led to symptoms related to catalepsy and subsequently hypothesized that such symptoms in mammals are the endogenous "morphine-like" consequences of compounds (Mavrojannis, 1903). In 1970, Davis and Walsh (1970) were the first to propose the presence of "true" morphine in mammals that potentially arose from a synthetic pathway similar to the biosynthetic pathway described in plants. Around the time of the discovery of the first endogenous opioid peptides, the group of Pr. S. Spector demonstrated the existence of an endogenous non-peptide "morphine-like compound" (MLC) (Gintzler et al., 1976a,b, 1978). This MLC was detected in rabbit and cat brains using a radioimmunoassay (RIA) directed against morphine. Once extracted, this compound displayed pharmacological properties identical to those of morphine. Furthermore, this MLC, which bound opioid resistant to peptidase/protease receptors. was treatments (Gintzler et al., 1976a,b, 1978). In parallel, other studies described the presence of a MLC in guinea-pig blood and small intestines (Schulz et al., 1977) as well as in human blood (Pert et al., 1976). A year later, Blume et al. (1977) described an antimorphine antibody that was able to bind specifically to MLC; the fact that it did not interfere with endogenous opioid peptides ruled out any possible artifacts. This group postulated that MLC has a molecular structure similar to that of morphine and hypothesized the existence of two families of compounds (peptide and non-peptide) that bind opioid receptors. The presence of MLC was described in the mouse brain and immunolocalized in neuronal perikarya and processes of the cerebellum and the raphe nuclei (Gintzler et al., 1978). Its presence was also described in the cerebrospinal fluid (CSF), urine and brain extracts of patients naïve for exogenous morphine or morphine derivatives, suggesting its endogenous origin (Shorr et al., 1978; Wuster et al., 1978). In 1981, Killian et al. (1981) confirmed the existence of a non-peptide compound immunoprecipitated by anti-morphine antibodies in the calf brain, with an analgesic activity that could be blocked by naloxone, an opioid receptor antagonist.

Identification of endogenous opiates. In 1985, Goldstein and collaborators described the presence of four different MLCs in the bovine brain and adrenal gland. Using a NMR (nuclear magnetic resonance) approach, they demonstrated that one of the four MLCs was structurally identical to morphine extracted from poppies (Goldstein et al., 1985). Morphine endogenously present in mammals was named "endogenous morphine" (EM) as opposed to morphine from plants (exogenous morphine). The same group subsequently described in the bovine hypothalamus, the presence of endogenous codeine, a morphine precursor (Weitz et al., 1986). In the years that followed, several studies focused on the presence of EM and endogenous codeine using high-performance liquid chromatography (HPLC). NMR and mass spectrometry (MS) approaches in tissues from different species (for review: Meijerink et al., 1999; Stefano et al., 2000).

Download English Version:

https://daneshyari.com/en/article/4338059

Download Persian Version:

https://daneshyari.com/article/4338059

Daneshyari.com