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In this paper we investigate bounded additivity in Discrete Tomography. This notion has 
been previously introduced in [5], as a generalization of the original one in [11], which 
was given in terms of ridge functions. We exploit results from [6–8] to deal with bounded S
non-additive sets of uniqueness, where S ⊂ Z

n contains d coordinate directions {e1, . . . , ed}, 
|S| = d + 1, and n ≥ d ≥ 3. We prove that, when the union of two special subsets of 
{e1, . . . , ed} has cardinality k = n, then bounded S non-additive sets of uniqueness are 
confined in a grid A having a suitable fixed size in each coordinate direction ei , whereas, 
if k < n, the grid A can be arbitrarily large in each coordinate direction ei , where i > k. 
The subclass of pure bounded S non-additive sets plays a special role. We also compute 
explicitly the proportion of bounded S non-additive sets of uniqueness w.r.t. those additive, 
as well as w.r.t. the S-unique sets. This confirms a conjecture proposed by Fishburn et al. 
in [14] for the class of bounded sets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Discrete Tomography additive sets play an important role, since the reconstruction and uniqueness problems on this 
class of sets can be solved in polynomial time by linear programming (whereas in general the problems are NP-hard [2]) 
and the additivity property can be checked efficiently [1,13]. This notion can be introduced in different ways. The original 
one, in [11], is given in terms of ridge functions, namely, a set E ⊂R

n is said to be additive if, for all i ∈ {1, . . . , n} there exist 
bounded measurable functions f i :R →R, such that

E =
{

x = (x1, . . . , xn) ∈R
n :

n∑
i=1

f i(xi) ≥ 0

}
.

Therefore, in its early beginning, additivity was an intrinsic property of a continuous set E , independently of any special 
selected set of directions. In [12] the same authors extended additivity to the discrete case, just assuming the real valued 
functions f i to be defined on a discrete set. In the same paper it was also introduced the notion of weakly bad configuration
for a set E , and proved that E is additive if and only if it has no weakly bad configurations. A weakly bad configuration for 
E is a pair of lattice sets (Z , W ), Z ⊂ E , W ∩ E = ∅, each consisting of k ≥ 2 lattice points not necessarily distinct (counted 
with multiplicity), such that for each point of Z there is a point of W along all the coordinate directions. Therefore, as 
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X-rays count the number of points on lines parallel to the coordinate directions, it is clear the connection and interest that 
additivity can assume for tomographic problems. In particular, additivity of a set E has been proved to be equivalent to the 
absence of weakly bad configurations for E , and implies uniqueness of reconstruction of E from the coordinate X-rays. As 
additivity is stronger than uniqueness, in [14] Fishburn et al. suggest that for some set of X-ray directions of cardinality 
larger than two, the proportion of lattice sets E of uniqueness that are not also additive approaches 1 as E gets large. They 
leave it as an open question in the discussion section. In the same work, the notion of additivity has been extended, and 
defined with respect to a Radon base S , consisting of linear subspaces of Rn . This reflects in a more general definition of 
weakly bad configurations, where all translates of any linear subspace belonging to the Radon base S meet Z and W in the 
same number of points.

When a Radon base S consists only of lines, it does not necessarily contain the coordinate directions. It is often implicitly 
assumed that S still spans Zn , so that S-weakly bad configurations have full dimension, like in the original case introduced 
in [11]. However, S could span a proper d-dimensional subspace H of Zn . In this case an S-weakly bad configuration (Z , W )

for a set E ⊂ Z
n assumes a more general structure. Indeed, it suffices that Z ⊂ (E ∩ H) and W ∩ E ∩ H = ∅.

More recently in [15], additivity has been extended to give a more general treatment of known concepts and results.
Thanks to this new approach, the authors showed that there are non-additive lattice sets in Z3 which are uniquely 

determined by their X-rays in the three standard coordinate directions by exhibiting a counter-example (see [15, Remark 2 
and Figure 2]). This answers in the negative a question raised by Kuba at a conference on discrete tomography in Dagsthul 
(1997), that every subset E of Z3 might be uniquely determined by its X-rays in the three standard unit directions of Z3 if 
and only if E is additive.

1.1. Bounded additivity and new results

A further generalization of additivity is obtained by restricting to a finite lattice tomographic grid G ⊂ Z
n . This is a finite 

set of lattice points which are the intersection of lines parallel to the directions in S . Feasible solutions of the reconstruction 
problem are subsets of G , and corresponding to nonzero X-rays in the directions in S . When S contains the coordinate 
directions, then the tomographic grid is an orthogonal box A, and we simply call it lattice grid. In this case it becomes 
quite convenient to exploit the algebraic approach to DT introduced by L. Hajdu and R. Tijdeman in [17]. In [3,4] special 
results obtained in [16], and concerning the unique determinations of bounded sets by four X-rays, have been extended to 
whole families of four lattice directions. This led to the notion of bounded S-additive sets (and of bounded S non-additive
sets), introduced in [5], and later extensively investigated in [6–8], with a main focus on bounded S non-additive sets of 
uniqueness. See also [9], where these notions provide a theoretical model for treating ghost artifacts in digital imaging from 
an algebraic point of view.

In the two dimensional case we proved that, when S is a minimal set of uniqueness for the lattice grid, then the 
proportion of bounded S non-additive sets of uniqueness w.r.t. the additive ones is constant and does not depend on the 
size of the grid [7].

In this paper, we completely settle the problem in Zn (n ≥ 2) by considering the coordinate directions as follows: When 
S spans the whole dimension n, and the union of two special subsets of S has cardinality k = n, then the result in [7] can be 
extended to any dimension (see Theorem 4). As an immediate consequence, we provide a deeper answer, in the negative, to 
the question raised by Kuba. Differently, for example when S spans a proper d-dimensional subspace H of Zn , with d < n, 
then we can distinguish “pure” bounded non-additive sets (defined as those sets E for which E = Z for some S-weakly bad 
configuration (Z , W )) counting weakly bad configurations as in [8]1 and bounded non-additive sets. Whereas in the former 
case, the number of pure bounded non-additive sets is small compared to all the others, in the latter case, Theorem 8 and 
Theorem 12 confirm that the conjecture of Fishburn et al. holds true.

2. Preliminaries

For the sake of completeness, we wish to recall some basic definitions and results already presented in [8, Section 2].
The standard orthonormal basis for Zn will be {e1, . . . , en}, and the coordinates with respect to this orthonormal basis 

x1, . . . , xn . A vector u = (a1, . . . , an) ∈ Z
n , where a1 ≥ 0, is said to be a lattice direction, if gcd(a1, . . . , an) = 1. We refer to a 

finite subset E of Zn as a lattice set, and we denote its cardinality by |E|. For a finite set S = {u1, u2, . . . , um} of directions 
in Zn , the dimension of S , denoted by dim S , is the dimension of the vector space generated by the vectors u1, u2, . . . , um . 
Moreover, for each I ⊆ S , we denote u(I) = ∑

u∈I u, with u(∅) = 0 ∈ Z
n . Given a lattice direction u, the X-ray of a lattice 

set E in the direction u counts the number of points in E on each line parallel to u. Any two lattice sets E and F are 
tomographically equivalent if they have the same X-rays along the directions in S . Conversely, a lattice set E is said to be 
S-unique if there is no lattice set F different from but tomographically equivalent to E .

An S-weakly bad configuration is a pair of lattice sets (Z , W ) each consisting of k lattice points not necessarily distinct 
(counted with multiplicity), z1, . . . , zk ∈ Z and w1, . . . , wk ∈ W such that for each direction u ∈ S , and for each zr ∈ Z , the 

1 The estimates presented in [8] (Subsections 3.2 and 3.3) concern pure bounded S non-additive sets. Even if the computations were clearly inspired by 
the conjecture in [14], we wish to remark that we referred the denominator to additive sets, instead of S-unique sets, as required.
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