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We present linear time and space operations on discrete paths. First, we compute the 
outer hull of any discrete path. As a consequence, a linear time and space algorithm is 
obtained for computing the convex hull. Next, we provide a linear algorithm computing 
the overlay graph of two simple closed paths. From this overlay graph, one can easily 
compute the intersection, union and difference of two Jordan polyominoes, i.e. polyominoes 
whose boundary is a Jordan curve. The linear complexity is obtained by using an enriched 
version of a data structure introduced by Brlek, Koskas and Provençal: a quadtree for 
representing points in the discrete plane Z ×Z augmented with neighborhood links, which 
was introduced in particular to decide in linear time if a discrete path is self-intersecting.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ever-growing use of digital screens in industrial, military and civil applications gave rise to a new branch of study 
of discrete objects, digital geometry, where the most basic objects are pixels. In particular, their geometric properties play 
an essential role in the design of efficient algorithms for recognizing patterns and extracting features: these are mandatory 
steps for an accurate interpretation of acquired images.

Fundamental geometric operations on sets of pixels, or discrete figures have been extensively studied. For instance, 
algorithms computing rotations, translations, symmetries, unions, intersections, dilations or segmentations of discrete figures 
are well documented (see [15] for a survey of the many algorithms available). However, none of the previous method is 
based on encodings of discrete figures by their boundary using combinatorics on words, a field which recently led to the 
development of efficient tools to study digital geometry (see [1,18]).

To illustrate the validity of this approach, consider the problem of finding the convex hull of a set of points. It is well 
known that for the Euclidean case, algorithms for computing the convex hull of a set S ⊂ R

2 run in O(n log n) time where 
n = |S| (see [8,16]). One can also show that such algorithms are optimal (see [9,15,20] for the general case). In the digital 
case, the situation is made surprisingly easier with the help of combinatorics on words. For instance, linear asymptotic 
bounds are obtained when considering discrete paths encoded by elementary steps. Indeed, Brlek et al. designed a linear 
time algorithm for computing the discrete convex hull of nonself-intersecting closed paths in the square grid [6]. It is based 
on an optimal linear time and space algorithm for factorizing a word in Lyndon words designed by Duval [12].
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Fig. 1. (a) A discrete path coded by the word w = 001100322223 and (b) its first difference word �(w) = 01030330001.

In this paper, we study fundamental geometric operations on connected discrete figures, or polyominoes with the help 
of combinatorics on words. As a first step, we describe a linear algorithm for computing the outer hull of any discrete path 
using the data structure described in [3] where the authors designed a linear time and space algorithm for detecting path 
intersection. It rests on a quadtree data structure induced by a natural radix order of N ×N. Then, each path is dynamically 
encoded by adding a pointer for each step of the discrete path encoded on the four letter alphabet {0, 1, 2, 3}. Then, we 
extend those ideas to develop linear time and space algorithms for computing the overlay of two Jordan curves on Z2. As 
a byproduct, the convex hull of any discrete path, the intersection, the union and the difference of two Jordan polyominoes 
are computed in linear time.

2. Preliminaries

Given a finite alphabet �, a word w is a function w : [1, 2, . . . , n] −→ � denoted by its sequence of letters w =
w1 w2 · · · wn , and |w| = n is its length. For a ∈ �, |w|a is the number of letters a in w . The set of all words of length 
k is denoted by �k . Consequently, �∗ = ⋃∞

i=0 �i is the set of all finite words on � where �0 = {ε}, the set consisting of 
the empty word. The set �∗ together with the operation of concatenation form a monoid called the free monoid on �.

Let w be any word. We say that the word u is a factor of w is there exist words x and y such that w = xuy. If |x| = 0
(resp. |y| = 0), then u is called a prefix (resp. suffix) of w .

There is a bijection between the set of pixels and Z2 obtained by mapping (a, b) ∈ Z
2 to the unitary square whose 

bottom left vertex coordinate is (a, b). Therefore, we may consider pixels as elements of Z2. By definition, a discrete set S
is a set of pixels, i.e. S ⊂ Z

2. Also, two pixels are called 4-adjacent (resp. 8-adjacent) if their intersection is a unit segment 
(resp. a point). A set S is called 4-connected (resp. 8-connected) if for any pair of pixels p, q ∈ S , there exist pixels p =
p0, p1, p2, . . . , pk−1, pk = q such that pi and pi+1 are 4-adjacent (resp. either 4- or 8-adjacent) for i = 0, 1, . . . , k − 1. Since 
any discrete set is a disjoint collection of 8-connected sets, we consider from now on that discrete sets are 4 or 8-connected. 
Also, define a hole of a discrete set S as a finite connected region of S . Any 4-connected (resp. 8-connected) hole is called 
a 4-hole (resp. 8-hole).

A convenient way of representing discrete sets without hole is to use a word describing its contour (or boundary). 
In 1961, Freeman proposed an encoding of discrete objects by specifying their contour using the four elementary steps 
(→, ↑, ←, ↓) 
 (0, 1, 2, 3) [14]. This encoding provides an advantageous representation of discrete paths in Z2. A discrete 
path is a sequence of points P = (p1, p2, . . . , pn) where pi and pi+1 are 4-adjacent for i = 1, 2, . . . , n − 1. More precisely, 
two points p and q are called neighbors if q = p + e for some elementary unit vector e ∈ {(1, 0), (0, 1), (−1, 0), (0, −1)}.

It is not hard to see that every discrete figure without hole can be represented by a closed and simple discrete path. From 
now on, we concentrate on the more general concept of discrete paths, referencing discrete figures without hole as “simple 
and closed discrete paths”. For example, the discrete figure of the single pixel (0, 0) is regarded as the path ((0, 0); 0123).

It is worth mentioning that in the case of a closed discrete path, w is unique up to a circular permutation of its letters 
and the sense of travel. For example, any circular permutation of the word w = 001100322223 represents the discrete path 
shown in Fig. 1(a). One says that a word w ∈ F∗ is closed if and only if |w|0 = |w|2 and |w|1 = |w|3. Further, w is called 
simple if it codes a nonself-intersecting discrete path, i.e. its only closed factors are ε and possibly w itself. For instance, 
w = 001100322223 is nonsimple and closed.

It is sometimes useful to consider encoding of paths with turns instead of elementary steps. Such encoding is obtained 
from the contour word w = w1 · · · wn by setting

�(w) = (w2 − w1)(w3 − w2) · · · (wn − wn−1)

where subtraction is computed modulo 4. �(w) is called the first differences word of w . Letters of �(w) ∈F∗ are interpreted 
via the bijection (0, 1, 2, 3) 
 (forward, left turn, U-turn, right turn). It is worth mentioning that for any closed path w , the 
first difference word of w is �(w)(w1 − wn), where �(w) is defined as above. For example, one can verify in Fig. 1(b) that 
�(w) = 01030330001 and that it codes the turns of w .
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