
Theoretical Computer Science 624 (2016) 121–135

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Efficient operations on discrete paths ✩

Alexandre Blondin Massé, Srečko Brlek ∗, Hugo Tremblay

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 March 2015
Accepted 13 July 2015
Available online 3 August 2015

Keywords:
Freeman code
Lattice paths
Radix tree
Discrete sets
Outer hull
Convex hull
Polyomino intersection
Union
Complement
Difference

We present linear time and space operations on discrete paths. First, we compute the
outer hull of any discrete path. As a consequence, a linear time and space algorithm is
obtained for computing the convex hull. Next, we provide a linear algorithm computing
the overlay graph of two simple closed paths. From this overlay graph, one can easily
compute the intersection, union and difference of two Jordan polyominoes, i.e. polyominoes
whose boundary is a Jordan curve. The linear complexity is obtained by using an enriched
version of a data structure introduced by Brlek, Koskas and Provençal: a quadtree for
representing points in the discrete plane Z ×Z augmented with neighborhood links, which
was introduced in particular to decide in linear time if a discrete path is self-intersecting.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ever-growing use of digital screens in industrial, military and civil applications gave rise to a new branch of study
of discrete objects, digital geometry, where the most basic objects are pixels. In particular, their geometric properties play
an essential role in the design of efficient algorithms for recognizing patterns and extracting features: these are mandatory
steps for an accurate interpretation of acquired images.

Fundamental geometric operations on sets of pixels, or discrete figures have been extensively studied. For instance,
algorithms computing rotations, translations, symmetries, unions, intersections, dilations or segmentations of discrete figures
are well documented (see [15] for a survey of the many algorithms available). However, none of the previous method is
based on encodings of discrete figures by their boundary using combinatorics on words, a field which recently led to the
development of efficient tools to study digital geometry (see [1,18]).

To illustrate the validity of this approach, consider the problem of finding the convex hull of a set of points. It is well
known that for the Euclidean case, algorithms for computing the convex hull of a set S ⊂ R

2 run in O(n log n) time where
n = |S| (see [8,16]). One can also show that such algorithms are optimal (see [9,15,20] for the general case). In the digital
case, the situation is made surprisingly easier with the help of combinatorics on words. For instance, linear asymptotic
bounds are obtained when considering discrete paths encoded by elementary steps. Indeed, Brlek et al. designed a linear
time algorithm for computing the discrete convex hull of nonself-intersecting closed paths in the square grid [6]. It is based
on an optimal linear time and space algorithm for factorizing a word in Lyndon words designed by Duval [12].

✩ With the support of NSERC (Canada).

* Corresponding author.
E-mail address: brlek.srecko@uqam.ca (S. Brlek).

http://dx.doi.org/10.1016/j.tcs.2015.07.033
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.07.033
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:brlek.srecko@uqam.ca
http://dx.doi.org/10.1016/j.tcs.2015.07.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.07.033&domain=pdf

122 A. Blondin Massé et al. / Theoretical Computer Science 624 (2016) 121–135

Fig. 1. (a) A discrete path coded by the word w = 001100322223 and (b) its first difference word �(w) = 01030330001.

In this paper, we study fundamental geometric operations on connected discrete figures, or polyominoes with the help
of combinatorics on words. As a first step, we describe a linear algorithm for computing the outer hull of any discrete path
using the data structure described in [3] where the authors designed a linear time and space algorithm for detecting path
intersection. It rests on a quadtree data structure induced by a natural radix order of N ×N. Then, each path is dynamically
encoded by adding a pointer for each step of the discrete path encoded on the four letter alphabet {0, 1, 2, 3}. Then, we
extend those ideas to develop linear time and space algorithms for computing the overlay of two Jordan curves on Z2. As
a byproduct, the convex hull of any discrete path, the intersection, the union and the difference of two Jordan polyominoes
are computed in linear time.

2. Preliminaries

Given a finite alphabet �, a word w is a function w : [1, 2, . . . , n] −→ � denoted by its sequence of letters w =
w1 w2 · · · wn , and |w| = n is its length. For a ∈ �, |w|a is the number of letters a in w . The set of all words of length
k is denoted by �k . Consequently, �∗ = ⋃∞

i=0 �i is the set of all finite words on � where �0 = {ε}, the set consisting of
the empty word. The set �∗ together with the operation of concatenation form a monoid called the free monoid on �.

Let w be any word. We say that the word u is a factor of w is there exist words x and y such that w = xuy. If |x| = 0
(resp. |y| = 0), then u is called a prefix (resp. suffix) of w .

There is a bijection between the set of pixels and Z2 obtained by mapping (a, b) ∈ Z
2 to the unitary square whose

bottom left vertex coordinate is (a, b). Therefore, we may consider pixels as elements of Z2. By definition, a discrete set S
is a set of pixels, i.e. S ⊂ Z

2. Also, two pixels are called 4-adjacent (resp. 8-adjacent) if their intersection is a unit segment
(resp. a point). A set S is called 4-connected (resp. 8-connected) if for any pair of pixels p, q ∈ S , there exist pixels p =
p0, p1, p2, . . . , pk−1, pk = q such that pi and pi+1 are 4-adjacent (resp. either 4- or 8-adjacent) for i = 0, 1, . . . , k − 1. Since
any discrete set is a disjoint collection of 8-connected sets, we consider from now on that discrete sets are 4 or 8-connected.
Also, define a hole of a discrete set S as a finite connected region of S . Any 4-connected (resp. 8-connected) hole is called
a 4-hole (resp. 8-hole).

A convenient way of representing discrete sets without hole is to use a word describing its contour (or boundary).
In 1961, Freeman proposed an encoding of discrete objects by specifying their contour using the four elementary steps
(→, ↑, ←, ↓)
 (0, 1, 2, 3) [14]. This encoding provides an advantageous representation of discrete paths in Z2. A discrete
path is a sequence of points P = (p1, p2, . . . , pn) where pi and pi+1 are 4-adjacent for i = 1, 2, . . . , n − 1. More precisely,
two points p and q are called neighbors if q = p + e for some elementary unit vector e ∈ {(1, 0), (0, 1), (−1, 0), (0, −1)}.

It is not hard to see that every discrete figure without hole can be represented by a closed and simple discrete path. From
now on, we concentrate on the more general concept of discrete paths, referencing discrete figures without hole as “simple
and closed discrete paths”. For example, the discrete figure of the single pixel (0, 0) is regarded as the path ((0, 0); 0123).

It is worth mentioning that in the case of a closed discrete path, w is unique up to a circular permutation of its letters
and the sense of travel. For example, any circular permutation of the word w = 001100322223 represents the discrete path
shown in Fig. 1(a). One says that a word w ∈ F∗ is closed if and only if |w|0 = |w|2 and |w|1 = |w|3. Further, w is called
simple if it codes a nonself-intersecting discrete path, i.e. its only closed factors are ε and possibly w itself. For instance,
w = 001100322223 is nonsimple and closed.

It is sometimes useful to consider encoding of paths with turns instead of elementary steps. Such encoding is obtained
from the contour word w = w1 · · · wn by setting

�(w) = (w2 − w1)(w3 − w2) · · · (wn − wn−1)

where subtraction is computed modulo 4. �(w) is called the first differences word of w . Letters of �(w) ∈F∗ are interpreted
via the bijection (0, 1, 2, 3)
 (forward, left turn, U-turn, right turn). It is worth mentioning that for any closed path w , the
first difference word of w is �(w)(w1 − wn), where �(w) is defined as above. For example, one can verify in Fig. 1(b) that
�(w) = 01030330001 and that it codes the turns of w .

Download English Version:

https://daneshyari.com/en/article/433821

Download Persian Version:

https://daneshyari.com/article/433821

Daneshyari.com

https://daneshyari.com/en/article/433821
https://daneshyari.com/article/433821
https://daneshyari.com

