
Theoretical Computer Science 596 (2015) 12–22

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Locality-preserving allocations problems and coloured bin 

packing

Andrew Twigg a,1, Eduardo C. Xavier b,∗,2

a Computing Laboratory, University of Oxford, United Kingdom
b Institute of Computing, University of Campinas (UNICAMP), Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2014
Received in revised form 28 April 2015
Accepted 18 June 2015
Available online 25 June 2015
Communicated by T. Erlebach

Keywords:
Bin packing
Approximation algorithms
Locality preserving allocations

We study the following problem, introduced by Chung et al. in 2006. We are given, online 
or offline, a set of coloured items of different sizes, and wish to pack them into bins 
of equal size so that we use few bins in total (at most α times optimal), and that the 
items of each colour span few bins (at most β times optimal). We call such allocations 
(α, β)-approximate. As usual in bin packing problems, we allow additive constants and 
consider (α, β) as the asymptotic performance ratios. We prove that for ε > 0, if we desire 
small α, no scheme can beat (1 + ε, �(1/ε))-approximate allocations and similarly as we 
desire small β , no scheme can beat (1.69103, 1 + ε)-approximate allocations. We give 
offline schemes that come very close to achieving these lower bounds. For the online 
case, we prove that no scheme can even achieve (O (1), O (1))-approximate allocations. 
However, a small restriction on item sizes permits a simple online scheme that computes 
(2 + ε, 1.7)-approximate allocations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of computing locality-preserving allocations of coloured items to bins, so as to preserve locality 
(colours span few bins) but remain efficient (use a few total bins). The problem appears to be a fundamental problem arising 
in allocating files in peer-to-peer networks, allocating related jobs to processors, allocating related items in a distributed 
cache, and so on. The aim is to keep the communication overhead between items of the same colour small. One application 
for example appears in allocating jobs in a grid computing system. Some of the jobs are related in such a way that results 
computed by one job are used by another one. There are also non-related jobs that may be from different users and 
contexts. Related jobs are of a same colour and each job has a length (number of instructions for example). In the grid 
environment each computer has a number of instructions donated by its owner to be used by the grid jobs. This way the 
objective is to allocate jobs to machines trying to use few machines (bins) respecting the number of instructions available 
(bins size), while also trying to keep related jobs together in as few machines as possible. In peer-to-peer systems a similar 
problem also appears where one wants to split pieces of files across several machines, and wants to keep pieces of a file 
close together to minimize the time to retrieve the entire file.

* Corresponding author.
E-mail addresses: andy.twigg@comlab.ox.ac.uk (A. Twigg), eduardo@ic.unicamp.br (E.C. Xavier).

1 Supported by a Junior Research Fellowship, St John’s College.
2 Supported by FAPESP and CNPq.

http://dx.doi.org/10.1016/j.tcs.2015.06.036
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.06.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:andy.twigg@comlab.ox.ac.uk
mailto:eduardo@ic.unicamp.br
http://dx.doi.org/10.1016/j.tcs.2015.06.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.06.036&domain=pdf


A. Twigg, E.C. Xavier / Theoretical Computer Science 596 (2015) 12–22 13

These problems can be stated as a fundamental bi-criteria bin packing problem. Let I be a set of items, each item of 
some colour c ∈ C , and denote by Ic the set of items of a given colour c. Denote by OPT(I) the minimum number of bins 
necessary to pack all items and denote by OPT(Ic) the minimum number of bins necessary to pack only items of colour c, 
i.e., as if we had a bin packing instance with items Ic . Let A(I) be the number of bins generated by algorithm A when 
packing all items, and for each colour c, let A(Ic) be the number of bins of this packing having items of colour c. We 
say that items of colour c span A(Ic) bins in this packing. We want an algorithm that minimizes both ratios A(I)

OPT(I) and 
maxc∈C

A(Ic)
OPT(Ic)

. So we would like to allocate the items to bins so that we use few bins in total (at most αOPT(I), where we 
call α the bin stretch), and the items of each colour c span few bins (at most βOPT(Ic), where we call β the colour stretch). 
We call such allocations (or packings) (α, β)-approximate. The problem of minimizing any one of α or β is equivalent to the 
classical one-dimensional bin packing, but as we show, in general it is not even possible to minimize them simultaneously. 
A natural extension is to consider bins as nodes of some graph G , and we want to allocate bins so that each subgraph Gc

induced by nodes containing items of colour c has some natural property allowing small communication overhead, such as 
having low diameter, or small size.

We prove that for ε > 0, if we desire small bin stretch, no scheme can beat (1 + ε, �(1/ε))-approximate allocations 
and similarly as we desire small colour stretch, no scheme can beat (1.69103, 1 + ε)-approximate allocations. We give 
offline schemes that are based in well know bin packing algorithms and yet come very close to achieving these lower 
bounds. We show how to construct (1 + ε, �(1/ε)) and (1.7, 1 + ε) approximate allocations, the first one closing the gap 
with the lower bound and the last one almost closing the gap. For the online case, we prove that no scheme can even 
achieve (O (1), O (1))-approximate allocations. However, a small restriction on item sizes permits a simple online scheme 
that computes (2 + ε, 1.7)-approximate allocations.

2. Preliminaries

We now formulate the problem of computing locality-preserving allocations as a coloured bin packing problem. We are 
given a set I of n coloured items each item e with a size s(e) in (0, 1] and with a colour c(e) from C = {1, . . . , m}, and an 
infinite number of unit-capacity bins. Let Ic be the set of colour-c items, and denote by OPT(I) (OPT(Ic) respectively) the 
smallest possible number of bins needed to store items in I (Ic respectively). For a packing P of items I , define P (I) as the 
number of bins used to pack I , and define Pc(I) as the number of bins spanned by colour-c items in the packing P . When 
I is obvious, we drop it and write P and Pc .

We define an (α, β)-approximate packing as one where: (1) P � αOPT(I) + O (1) and (2) for each colour c ∈ C , Pc �
βOPT(Ic) + O (1). An algorithm that always produces (α, β)-approximate packings is called an (α, β)-approximation algorithm.

As usual in bin packing problems, we allow additive constants and consider α (respectively β) as the asymptotic per-
formance ratio as OPT(I) (respectively OPT(Ic)) grows to infinity (and hence the total weight of items). This is because a 
simple reduction from PARTITION (e.g. see [10]) shows that, without allowing additive constants, it would be NP-hard to do 
better than (1.5 − ε, δ) or (δ, 1.5 − ε) approximate packings for any δ.

When dealing with the online problem we have similar definitions for the competitive ratio of an online algorithm, 
and in this case OPT(I) corresponds to an optimal offline solution to instance I that has full knowledge of the request 
sequence I . As standard, we shall use the term approximation ratio interchangeably with competitive ratio when discussing 
online algorithms (i.e. a 2-approximate online scheme is one that is within a factor 2 of the optimal offline scheme).

2.1. Related work

Chung et al. [4] consider the case where each item is of a different colour and can be fractionally (arbitrarily) divided 
between bins, bins have different sizes and the total weight of items exactly equals the total weight of bins. They show how 
to compute an allocation that is asymptotically optimal for each colour. By contrast, we relax the assumption that we must 
exactly fill all the bins, and consider the case of indivisible allocations. In this setting, the problem is much more interesting: 
it is impossible to get arbitrarily good (1 + ε, 1 + ε)-approximate allocations in general. Thus, these relaxed packings have 
a tradeoff between bin stretch and colour stretch, with polynomial-time approximations. We also consider for the first time 
the case where items arrive online. However, the case of heterogeneous bins is open for our setting.

The nonexpansive hashing scheme of Linial and Sasson [16] can also be used to find a locality-preserving packing for 
unit-size items. By defining the distance of two items to be 0 if they are of the same colour, and δ > 1 otherwise, one can 
interpret their dynamic hashing result as follows: for any ε > 0, it is possible to hash unit-size items into bins in O (1) time 
so that they have use O (OPT1+ε) bins (giving bin stretch O (OPTε) and colour stretch O (1)).

Krumke et al. [14] study a related ‘online coloured bin packing’ problem where the goal is to minimize the number of 
different colours packed into each bin, while using the entire capacity of each bin (in their problem all items have same 
unit size). However, this problem is quite different to ours. In particular, an optimal solution problem when minimizing 
the number of colours per bin may give arbitrarily bad bin stretch. Consider b bins of capacity x, and unit size items of 
many colours c1, c2, . . . , c(x−2)b+1. There will be 2b items of colour c1 and 1 item of each of the other colours. Now, a 
(1, 1)-approximate packing places x colours from {c2 . . . c(x−2)b+1} into each bin and the items of c1 into the remaining bins. 
On the other hand, a packing minimizing the maximum number of colours per bin (while using all the capacity of each 



Download English Version:

https://daneshyari.com/en/article/433825

Download Persian Version:

https://daneshyari.com/article/433825

Daneshyari.com

https://daneshyari.com/en/article/433825
https://daneshyari.com/article/433825
https://daneshyari.com

