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The “Three Squares Lemma” [9] famously explored the consequences of supposing that 
three squares occur at the same position in a string; essentially it showed that this 
phenomenon could not occur unless the longest of the three squares was at least the sum 
of the lengths of the other two. More recently, several papers [10,30,21,13] have greatly 
extended this result to a “New Periodicity Lemma” (NPL) by supposing that only two of 
the squares occur at the same position, with a third occurring in a neighbourhood to the 
right — in these cases also, similar restrictions apply. In this paper an alternative strategy 
is proposed: the consequences of having only two squares at neighbouring positions 
are carefully analyzed, and then the observation is made that the analysis applies in a 
straightforward way (though perhaps with complicated details) to the three neighbouring 
squares problem in its full generality. We then apply these new insights, first to proofs of 
the final two remaining unproved subcases (out of a total of 14) of the NPL [10], then to 
an instance of the more general problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Beginning with the “Three Squares Lemma” of Crochemore & Rytter [9], there has for several years been considerable 
interest in the limitations that may exist on periodicity in strings. An early survey of this topic by Mignosi & Restivo, with 
useful suggestions for future research directions, appears as Chapter 8 in [22]. In [9] it was shown that three squares could 
exist at the same position in a string only if the longest of the three was at least the sum of the lengths of the other 
two. Over the last decade, a sequence of papers [10,30,21,13] greatly generalized this result and also made it more precise 
by considering two squares u2 and v2 at the same position, with however the third square w2 offset a distance k ≥ 0 to 
the right. First stated and proved as the “New Periodicity Lemma” (NPL) in [10], the main theorem has since been made 
more specific, with 12 of 14 subcases proved [30,21,13] — a main achievement of this paper is to establish the two that 
remain. Thus the assumption that three neighbouring squares of well-defined size exist within these well-defined bounds 
has been shown to lead to the conclusion that locally the string breaks down into repetitions of small period. In this paper 
we begin by proving a lemma that deals in a precise way with just two overlapping squares; we then apply this result 
to complete the proof of the final two cases of the NPL. We are as a consequence able to characterize the general case of 
three overlapping squares — no two constrained to begin at the same position — and therefore we can make a start on 
considering the combinatorial consequences.
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Interest has been added to this research by a parallel development over the last dozen years or so: the attempt to specify 
sharp bounds on the number of maximal periodicities (“runs”) that can occur in any string of given length n. Kolpakov & 
Kucherov [19] showed that the maximum number of runs (usually denoted ρ(n)) was linear in n, and moreover they 
described a linear-time algorithm to compute all the runs in any given string; but their proof was nonconstructive — the 
maximum number of runs was shown to be �(n) but no constant of proportionality was specified. As briefly described in 
Section 2, the resulting research has led to the conclusion that ρ(n) is at least 0.9445757n [31,20] and no more than n −1
[2] — in other words, more or less the string length n. What links these two streams of research is a simple observation:

If the maximum number of runs over all strings of length n is itself approximately n, then on average there will be about 
one run starting at each position. Thus, if two runs start at some position, there must be some other position, probably 
nearby, at which no run can start — “probably nearby” because the interference of overlapping squares typically precludes 
periodic behaviour at one or more positions within the range of the double periodicity. More generally, determining 
combinatorial constraints on the occurrence of overlapping squares (runs) may lead to a better characterization of ρ(n).

There is a third avenue of research that relates closely to overlapping squares: the computation of all the runs/repetitions 
in a given string. At present the only way that this can be done is a form of brute force: global data structures (suffix array, 
longest common prefix array, Lempel–Ziv decomposition) need to be computed in an extended preprocessing phase, when 
of course runs are generally a local phenomenon. Moreover, it has been shown [26] that the expected number of runs in a 
string is much less than string length: runs generally occur sparsely. A global approach is necessitated by the absence of a 
detailed understanding of the combinatorics of overlapping occurrences of runs in strings.

In Section 2 terminology, notation and the relevant background are reviewed; Section 3 shows how to express the general 
case of three overlapping squares, making use of a careful analysis of two overlapping squares; Section 4 makes use of the 
new result to prove the two remaining subcases (3 & 7) of the NPL; then in Section 5 a further application to the general 
case of three overlapping squares is proved; finally, in Section 6 we briefly discuss future research directions.

2. Preliminaries

(Usage generally follows [32].) A string is a finite sequence of symbols (letters) drawn from some finite or infinite set �
called the alphabet. The alphabet size is σ = |�|. We write a string x in mathbold, and we represent it as an array x[1..n]
for some n ≥ 0. We call n = x the length of x. For x = 0, x = ε, the empty string.

If x = uv w , then u is said to be a prefix, v a substring (or factor) and w a suffix of x. If x = uv , 0 ≤ u < x, then vu
is said to be the uth rotation of x, written Ru(x). If x = uv = wu for u < x, then u is a border of x, and x has period
p = x −u; that is, for every i ∈ 1..u, x[i] = x[i +p]. The string

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a b
(1)

has borders abaab and ab, hence corresponding periods 5 and 8, respectively.
If v = x[i.. j] has period p, where v/p ≥ 2, and if neither x[i −1.. j] nor x[i.. j +1] (whenever these are defined) has 

period p, then the range i.. j in x is said to be a maximal periodicity or run in x [23]. A run is identified by a 4-tuple 
(i, p, e, t), where we choose p to be the minimum period of v , e = �v/p� ≥ 2 is its exponent, and t = v mod p ∈ 0..p −1 is 
its tail. Then j = i +pe +(t−1). The string (1) has five runs

(1,3,2,0), (1,5,2,0), (3,1,2,0), (4,2,2,1), (8,1,2,0)

corresponding to (aba)2, (abaab)2, a2, (ab)2a, a2, respectively.
Every run in x determines t+1 repetitions,

(i, p, e), (i+1, p, e), . . . , (i+t, p, e),

where (i′, p, e), i ≤ i′ ≤ i +t , identifies the substring

x[i′..i′+pe−1] = x[i′..i′+p−1]e.

Thus every repetition in x is a subrange of exactly one run in x. For example, (1) has six repetitions

(1,3,2), (1,5,2), (3,1,2), (4,2,2), (5,2,2), (8,1,2)

corresponding to (aba)2, (abaab)2, a2, (ab)2, (ba)2, a2, respectively. Where no ambiguity arises, we will generally refer to 
runs and repetitions as substrings (for example, (aba)2, (ab)2a) rather than as ranges in x (1..6, 4..8). If e = 2, we say that 
the repetition is a square. We say that a square u2 is irreducible if u is not itself a repetition, regular if u has no square 
prefix.
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