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We address a class of deterministic scheduling problems in which two agents compete for 
the usage of a single machine. The agents have their own objective functions and submit in 
each round an arbitrary, unprocessed task from their buffer for possible selection. In each 
round the shortest of the two submitted tasks is chosen and processed on the machine.
We consider the problems under two distinct perspectives: First, we look at them from 
a centralized point of view as bicriteria optimization problems and try to characterize 
the set of Pareto optimal solutions. Then, the problems are viewed under the perspective 
of a single agent. In particular, we measure the worst-case performance of classical 
priority rules compared to an optimal strategy. Finally, we consider minimax strategies, 
i.e. algorithms optimizing the objective of one agent in the worst case.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In multi-agent scheduling problems a set of tasks has to be processed on some processing resource and each task belongs 
to one decision maker (agent). Each agent is interested in optimizing its own performance measure which only depends on 
its tasks completion times. Although these problems can be viewed as a special case of multi-objective scheduling problems, 
their specific properties and applications have spurred a considerable amount of research since the seminal works by Agnetis 
et al. [2] and Baker and Smith [6]. Most of the recent literature on multi-agent scheduling problems falls into two main 
streams of research: one focuses on the problem in a multi-objective optimization perspective (see, for example, [10,15]); 
the other is from the algorithmic game theory point of view. In the latter context, for instance, mechanism design has 
received considerable attention in the recent literature (see, e.g. [5,9]). The goal is to design system-wide rules which, given 
the selfish decisions of the users, maximize the total social welfare. The degree to which these rules approximate the social 
welfare in a worst-case equilibrium is known as the price of anarchy of the mechanism. See [1] for an overview of these 
types of problems.

In this work we address a two-agent scheduling problem introduced in [3]: Two agents, A and B , each owning a set 
of nonpreemptive tasks (or jobs), require a single (commonly used) machine to process their tasks. Each agent pursues 
the minimization of a given objective function, such as makespan, total completion time or total weighted completion 
time. Additionally, a coordination mechanism, aiming at the maximization of the number of processed tasks per time unit, 
regulates access of agents’ tasks to the machine as follows: Each agent submits one task for possible processing. The shortest 
among the two submitted tasks is selected and scheduled at the end of the current schedule, which is initially empty. When 
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all tasks of one agent have been processed, the remaining tasks of the other agents are appended thereafter in the order 
they are submitted. In the following we refer to the above steps as rounds. We also say that the selected task in one round 
(and the corresponding agent) is the winner, while the other task (and agent) is the loser.

We look at the problem in two different settings. In a centralized perspective we aim at characterizing the set of Pareto 
optimal (PO) schedules in terms of size and computational complexity, as in a bicriteria optimization problem. Then, we 
consider the problem from a single agent perspective and search for a strategy, i.e., an algorithm that suggests to the agent 
which task to submit in each round, taking into account its own objective function. In this context we study the effectiveness 
of natural priority rules, e.g., when the agent submits its tasks in SPT or WSPT order. Moreover, we consider the case in 
which one agent wants to select a strategy that minimizes its solution cost in the worst possible case, i.e., for any strategy 
adopted by the opponent, even if the opponent aims only at worsening the first agents’ objective. This corresponds to what 
is usually called minimax strategy in game theory.

This twofold approach has also been adopted in [3,4,11,12]. In particular, in [3] the authors introduce a class of multi-
agent scheduling problems in which the decision process is organized in rounds and provide some preliminary results for 
different shop configurations. A detailed analysis of the so-called linear conveyor shop configuration is carried out in [4], 
where a number of properties and solution algorithms are presented taking into account both centralized and single-agent 
perspectives. The shop configuration of [4] refers to a manufacturing application in which two linear conveyor belts, one 
for each agent, transport parts to the machine. So, each agent sequences the parts on the conveyor, implying that, at each 
round, one of the two candidate tasks is the loser of the preceding round. In other words, each task is submitted for possible 
processing, in the given order, until it wins.

In this paper we consider a different, more general configuration (denoted as flexible processing in [3]) in which there 
are no queues at the machine and at each round any part from the two agents’ buffers can be picked up and submitted 
for possible processing. Hence, in this case, the agents are free to choose any available task for submission at each round, 
independently from the outcome of the previous round. In particular, the two shop configurations (linear conveyor and 
flexible processing) produce different sets of feasible schedules. Note that in [3] part of the results discussed in this paper 
have been already mentioned.

Hereafter, we present the organization of the paper and summarize the main contributions. In Section 2 we introduce the 
notation and give a formal statement of the addressed problems. Section 3 characterizes the set of PO solutions for various 
objective functions. In particular, we investigate the complexity of finding Pareto optima and determine their number. We 
derive bounds on the size of the PO set and thus establish the boundary between objective functions with exponential size 
PO sets and those whose PO sets have polynomial size. We also show that the problem of deciding whether a feasible 
schedule with given bounds on the agents objectives exists, is NP -complete for those problems having exponentially many 
PO solutions.

In Section 4 we consider a single agent perspective and provide results on the worst-case performance of various heuris-
tic strategies. In particular, we evaluate the quality of schedules one agent, say B , can attain when its tasks are sequenced 
by applying the well known SPT and WSPT rules against any strategy, or against a “reasonably restricted” strategy of the 
opponent agent. To this purpose we measure the worst-case performance ratio ρ(H) between the value of B ’s objective 
obtained by applying a heuristic algorithm H and that of the best possible solution it could attain (a formal definition of 
ρ(H) is given in Section 4). For most cases we derive tight worst-case ratios.

Section 5 deals with the problem of devising minimax strategies for agent B . We prove that the best solution value 
B can attain for any regular (i.e. nondecreasing with respect to the completion times) objective function f B against a 
malevolent strategy of A, is independent on whether A and B are restricted to stick to a submission sequence or whether 
they are free to adopt any strategy. In particular, we show that SPT is a minimax strategy for one agent when its ob-
jective is the minimization of the makespan or total completion time. On the other hand, finding a minimax strategy 
when B ’s objective is the total weighted completion time turns out to be non trivial but it can be done in polynomial 
time.

2. Formal problem definition

Let A and B denote the two agents. Each agent owns a set of n nonpreemptive tasks to be performed on a single 
machine which can process only one task at a time. Tasks have nonnegative deterministic processing times a1 ≤ a2 ≤ . . . ≤ an
for agent A and b1 ≤ b2 ≤ . . . ≤ bn for agent B . For convenience, we will often refer to tasks by their processing times. 
Sometimes each task also has a weight indicating its importance. We will only need explicit weight values for agent B and 
thus define a weight w j for each task b j , j = 1, . . . , n. All data are known by both agents and all tasks are available at 
the beginning of the planning process. Each agent wants to optimize its own objective function, which only depends on 
the completion times of its tasks: f A = f A(C A

1 , . . . , C A
n ) and f B = f B(C B

1 , . . . , C B
n ), where C X

j is the completion time of task 
j of agent X ( j = 1, . . . , n, X = A, B). In this paper we consider the minimization of (i) makespan f X = max{C X

1 , . . . , C X
n }, 

(ii) total completion time f X = ∑n
j=1 C X

j , and (iii) total weighted completion time, e.g. f B = ∑n
j=1 w j C B

j . We denote by 
( f A, f B) the problem where f A and f B are the two agents’ objective functions.

The decision process is divided into 2 n rounds each consisting of the following two steps.
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