
Science of Computer Programming 90 (2014) 135–160

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Semi-automated architectural abstraction specifications for
supporting software evolution

Thomas Haitzer ∗, Uwe Zdun

Software Architecture Group, Faculty of Computer Science, University of Vienna, Vienna, Austria

h i g h l i g h t s

• We provide semi-automatic architecture abstractions based on UML-component models.
• Stable architecture abstractions with respect to software evolution.
• Built-in support for traceability and consistency checking.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2012
Received in revised form 11 October 2013
Accepted 12 October 2013
Available online 24 October 2013

Keywords:
Architectural abstraction
Architectural component and connector
views
Software evolution
UML
Model transformation

In this paper we present an approach for supporting the semi-automated architectural
abstraction of architectural models throughout the software life-cycle. It addresses the
problem that the design and implementation of a software system often drift apart as
software systems evolve, leading to architectural knowledge evaporation. Our approach
provides concepts and tool support for the semi-automatic abstraction of architecture
component and connector views from implemented systems and keeping the abstracted
architecture models up-to-date during software evolution. In particular, we propose
architecture abstraction concepts that are supported through a domain-specific language
(DSL). Our main focus is on providing architectural abstraction specifications in the DSL
that only need to be changed, if the architecture changes, but can tolerate non-architectural
changes in the underlying source code. Once the software architect has defined an
architectural abstraction in the DSL, we can automatically generate architectural component
views from the source code using model-driven development (MDD) techniques and
check whether architectural design constraints are fulfilled by these models. Our approach
supports the automatic generation of traceability links between source code elements and
architectural abstractions using MDD techniques to enable software architects to easily link
between components and the source code elements that realize them. It enables software
architects to compare different versions of the generated architectural component view
with each other. We evaluate our research results by studying the evolution of architectural
abstractions in different consecutive versions of five open source systems and by analyzing
the performance of our approach in these cases.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many software projects the design and the implementation drift apart during development and system evolution [1].
In some small projects this problem can be avoided, as it might be possible to understand and maintain a well written

* Corresponding author. Tel.: +43 1 4277 78521; fax: +43 1 4277 8 78521.
E-mail addresses: thomas.haitzer@univie.ac.at (T. Haitzer), uwe.zdun@univie.ac.at (U. Zdun).
URLs: http://informatik.univie.ac.at/thomas.haitzer (T. Haitzer), http://informatik.univie.ac.at/uwe.zdun (U. Zdun).

0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.10.004

http://dx.doi.org/10.1016/j.scico.2013.10.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:thomas.haitzer@univie.ac.at
mailto:uwe.zdun@univie.ac.at
http://informatik.univie.ac.at/thomas.haitzer
http://informatik.univie.ac.at/uwe.zdun
http://dx.doi.org/10.1016/j.scico.2013.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.10.004&domain=pdf


136 T. Haitzer, U. Zdun / Science of Computer Programming 90 (2014) 135–160

source code without additional architectural documentation. For many larger systems, this is not an option, and additional
architectural documentation is required to aid the understanding of the system and especially to comprehend the “big
picture” by providing architectural knowledge about a system’s design [2]. One way to provide this information are auto-
matically generated diagrams of the systems (e.g. in form of class diagrams) [3]. However these diagrams usually do not
represent higher-level abstractions, and hence they hardly support the understanding of the big picture. First of all, the
sheer size of the automatically generated diagrams is often a problem. In addition, creating an automatic layout or parti-
tioning that is understandable is still an open research topic [4,5]. Clustering approaches from the reengineering research
literature (e.g. [6–8]) can help to obtain an initial understanding and make sense of such diagrams. However the case study
by Corazza et al. [9] shows that in five out of seven cases it is necessary to make manual corrections for about half of the
entities of the analyzed source code.

As a consequence, today the documentation of the system’s architecture is usually maintained manually. To model ar-
chitectural knowledge, often models using box-and-line-diagrams [10], UML [11], architecture description languages (ADLs)
[12], or similar modeling approaches are used. In many cases, such models are created before the actual implementation
begins. Later, during implementation and system evolution, they loose touch with reality because changes to the software
design are only made in the source code while the architectural models are not updated [13]. This problem is known as
architectural knowledge evaporation [1].

Our approach focuses on architectural abstractions from the source code in a changing environment while still supporting
traceability. It was initially introduced in a paper at the QoSA 2012 conference [14]. In this article we further extend our
approach with respect to its traceability and consistency checking capabilities. We describe in detail how the approach
provides these features to the software architect. Furthermore we provide extended case studies of our approach which also
include additional information regarding traceability and consistency.

A considerable number of works exist that focus on abstractions from source code [15,16,8,17]. However, to the best of
our knowledge, so far none of these approaches targets architectural abstractions at different levels of granularity, traceabil-
ity between architectural models and the code, and the ability to cope with the constant evolution of software systems. Our
approach introduces the semi-automatic abstraction of architectural component and connector view models from the source
code based on an architectural abstraction specified in a domain specific language (DSL) [18,19]. In contrast to the related
works, our approach specifically targets architectural abstractions and requires changes to the architectural abstraction spec-
ifications only in the rare case that the architecture of the system changes, but not for the vast majority of non-architectural
changes we see during a software system’s evolution (see Section 2). Please note that in the literature the term “component
model” is often used to describe meta-models for component-based development [20]. In this paper, we (only) use the term
architectural component and connector view (or component view for short) to describe a model that contains architectural
components (as in [21]).

We chose a semi-automatic approach to enable the software architect to provide information which system details are
relevant for getting the right level of abstraction – as software architecture is usually described in different views at dif-
ferent levels of abstraction. Our goal is to let the software architect specify this information with minimal effort in an
easy-to-comprehend DSL that provides good tool support. Our approach allows architects to create different architectural
abstraction specifications that represent different levels of abstraction and thus supports views ranging from high-level soft-
ware architectural views to more low-level software design views. Once the software architect has defined an architectural
abstraction in the DSL, we can automatically generate architectural component views from the source code using model-
driven development (MDD) techniques and check whether architectural design constraints are fulfilled by these models.

As our approach focuses on defining stable abstractions in the architectural abstraction specification, it can cope with
many changes to the underlying source code without changing the architecture description (i.e., an instance of the DSL).
Only changes to the architecture itself, which usually require a substantial modification of the source code, require the
architectural abstraction specification to be updated. By creating different versions of the architectural component view over
time, we are able to use a delta comparison to check and reason about the changes of the architectural component view.
The generated models can be compared to a design model, to check the consistency of an implementation and its design,
and to analyze the differences. To support the iterative nature of our approach, it also supports automatically checking the
consistency between the source code model and the architecture abstraction specification on the fly.

Once the architectural component views have been abstracted, another problem is to identify which parts of the source
code contribute to a specific component, i.e., to support traceability between architectural models and code. Today, this
usually requires substantial and non-trivial manual effort to identify which code elements are related to which model
elements. In contrast, in our approach, traceability can be automatically ensured, as model-driven development (MDD) [22]
is used to generate the required traceability links between the model elements and the source code directly from the
architectural abstraction specification.

The remainder of the paper is organized as follows: Section 2 explains the research problem addressed by this paper in
more detail, as well as the research method that was applied to design and evaluate the DSL. Section 3 gives an overview
of our approach. Section 4 provides details about our architectural abstraction DSL and its implementation. In Section 5 we
present the evaluation of our approach based on five cases and a performance evaluation. In Section 6 we discuss open
issues and lessons learned. Section 7 compares our approach to the related work, and we conclude in Section 8.



Download English Version:

https://daneshyari.com/en/article/433863

Download Persian Version:

https://daneshyari.com/article/433863

Daneshyari.com

https://daneshyari.com/en/article/433863
https://daneshyari.com/article/433863
https://daneshyari.com

