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Re learning in the limit from positive data, a major concern is which classes of languages 
are learnable with respect to a given learning criterion. We are particularly interested 
herein in the reasons for a class of languages to be unlearnable. We consider two types 
of reasons. One type is called topological where it does not help if the learners are allowed 
to be uncomputable (an example of Gold’s is that no class containing an infinite language 
and all its finite sub-languages is learnable — even by an uncomputable learner). Another 
reason is called computational (where the learners are required to be algorithmic). In 
particular, two learning criteria might allow for learning different classes of languages from 
one another — but with dependence on whether the unlearnability is of type topological 
or computational.
In this paper we formalize the idea of two learning criteria separating topologically in 
learning power. This allows us to study more closely why two learning criteria separate in 
learning power. For a variety of learning criteria, concerning vacillatory, monotone, (several 
kinds of) iterative and feedback learning, we show that certain learning criteria separate 
topologically, and certain others, which are known to separate, are shown not to separate 
topologically. Showing that learning criteria do not separate topologically implies that any 
known separation must necessarily exploit algorithmicity of the learner.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The learning theory of this paper pertains to trial and error learning of (algorithmic) descriptions, i.e., grammars or 
programs, for formal languages L. This kind of learning is sometimes called learning in the limit, and herein it is such learning 
from positive data only re such L. The languages are taken without loss of generality to be computably enumerable sets of 
non-negative integers (i.e., natural numbers). As an example: a learner h (either algorithmic or not) is presented, in some 
order, all and only the even numbers, and, after it sees for a while only multiples of 4, it outputs some description of the 
set of multiples of 4. Then, when, h sees a non-multiple of 4, it outputs a description of the entire set of even numbers.

Many criteria for saying whether a learner h is successful on a language L have been proposed in the literature. Gold, 
in his seminal paper [11], gave a first, simple learning criterion, we call TxtGEx-learning,1 where a learner is successful iff, 
on every text for L (a listing of all and only the elements of L), it eventually stops changing its conjectures, and its final 
conjecture is a correct description for L (this latter is the explanatory part of TxtGEx). Trivially, each single, describable 
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1 Txt stands for learning from a text (list) of positive examples; G stands for Gold, who first described this mode of learning in the limit [11]; Ex stands 
for explanatory.
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language L has a suitable constant function as an TxtGEx-learner (this learner constantly outputs a description for L). Thus, 
we are interested instead in knowing for which classes of languages L there is a single learner h learning each member of L. 
A wide range of learning criteria including TxtGEx-learning have been investigated (see, for example, the textbook [17]).

Already Gold [11] found that certain classes of languages are not TxtGEx-learnable because of what was later called 
topological considerations,2 e.g., when trying to TxtGEx-learn a class of languages containing an infinite language and all 
the finite subsets of it, the learner cannot distinguish between the infinite set and any of its finite subsets as, at any time, 
the learner has seen only finitely much positive data (and is missing information about the complement of the language); 
furthermore, it turns out, for this example, not even uncomputable h can learn the class. Angluin [1] described another 
essentially topological restriction of TxtGEx-learning. Intuitively, when one of these restrictions is not met, the learner just 
does not get enough information to be successful, regardless of its power. We collect a number of previously known topo-
logical constraints on TxtGEx-learning in Section 3, along with such constraints for so-called strongly monotone learning.

A lot of work re the learning theory area of the present paper centers around deciding whether one learning criterion I
allows for learning classes of languages which are not learnable in another learning criterion I ′ (we then say that I separates
from I ′). We are interested herein in analyzing more closely the reasons for learning criteria to separate. In practice, such 
separations of learning criteria either involve intricate computational (or algorithmicity) arguments (such as program self-
reference arguments or reductions to algorithmically undecidable sets) or topological arguments. We give next an example 
of each.

A learner is said to be consistent if, at any point, the language described by its conjecture at that point contains all the 
data known at that same point. We write consistent TxtGEx-learning as TxtGConsEx when only computable learners are 
considered. It is well known that TxtGEx separates from TxtGConsEx [24]. An example class that cannot be TxtGEx-learned 
consistently is the class of all non-empty languages where the least element is a coded description for the language (a nu-
merical name of a description in some acceptable numbering of all computably enumerable sets). It is clear that the reason 
that this class cannot be learned consistently by a computable learner is the algorithmic undecidability of the consistency of 
a conjecture. And, indeed, if the learners in both criteria are not restricted to be computable, the same classes of languages 
are learnable.

In contrast to this, consider iterative learning [29,28]. At any point, an iterative learner has as its input only its just previ-
ous conjecture and the current text datum. Iterative learning proceeds by processing the text item by item and also requires 
the convergence to a correct conjecture (the Ex part), so that we call this learning criterion TxtItEx. It is well-known that 
TxtGEx separates from TxtItEx. We consider the following proof of this separation [20,22]. Let L be the class containing 
the language N+ (the language of all positive natural numbers) as well as every finite language containing 0. This class of 
languages is clearly TxtGEx-learnable, even by learners which map a string of inputs to a conjecture in linear time. How-
ever, this class cannot be TxtItEx-learned. For suppose, by way of contradiction, that some (possibly even non-computable) 
h would TxtItEx-learn this class of languages. Then, when being fed positive numbers, h will eventually output a conjecture 
for N+ and not change conjecture any more. If now, after some more positive numbers, a 0 is presented, h has “forgotten” 
which positive numbers were presented. A more formal proof can be found after the statement of Theorem 4.4 below. 
This shows how iterative learning leaves the learner at an informational disadvantage; even removing any requirement of 
computability for the learner cannot enable this iterative learning.

We would like to call separations of the first kind computational, and separations of the second kind topological. Note, 
though, that the separating class in the second/topological example can be indexed in such a way that membership in 
the languages in the class is uniformly decidable in linear time, while in the first/computational example the separating 
class was not a uniformly decidable class at all. Thus, we formalize our idea of topological separation versus computational 
separation herein as follows. We say that a learning criterion I separates topologically from a learning criterion I ′ iff there is a 
uniformly linear-time decidable class of languages I-learnable by a linear-time computable learner, but not I ′-learnable even 
by non-computable learners (see Section 2 for a more formal definition). Why do we require the uniform decision procedure 
and the learner to be computable in linear time? There are at least two reasons. First, if a separation was witnessed only 
by classes which are learnable by total learners, but not computationally very simple learners, then one can hardly claim 
that there is no computational component to the separation; the same holds for the uniform decision procedure. Second, 
our separations are stronger than if we would require only uniform computability. If two learning criteria separate, but not 
topologically, then we say that these learning criteria separate computationally.

With these definitions we now have that TxtGEx and TxtItEx separate topologically, while TxtGEx and TxtGConsEx
separate only computationally. However, although some uncomputable learners can test consistency (in general they would 
have to decide the halting problem) we do get that some learning criteria do separate topologically from their consistent 
variant: TxtItEx and TxtItConsEx separate topologically, as our Theorem 4.5 in Section 4 below shows.

We next summarize informally some of our other main theorems also in Section 4 below.

2 These topological considerations arise, for example, for TxtGEx-learning, because learning from positive data is missing information, e.g., the negative 
data. They are involved in unlearnability results which hold for all learners h of the relevant type fitting the criterion at hand — including, in particular, all 
such uncomputable hs. The associated proofs of unlearnability typically feature directly or indirectly plays of a winning strategy for a Banach–Mazur game 
where the goal set is co-meager — as in Baire category theory [14] — and Baire category theory is part of topology. The connection to Baire category theory 
was first observed in [23] (see also [24]).
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