
Theoretical Computer Science 584 (2015) 115–130

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Analysis of fully distributed splitting and naming probabilistic

procedures and applications

Y. Métivier ∗, J.M. Robson, A. Zemmari

Université de Bordeaux, Bordeaux INP, LaBRI, UMR CNRS 5800, 351 cours de la Libération, 33405 Talence, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 November 2013
Received in revised form 2 February 2015
Accepted 10 February 2015
Available online 17 February 2015

Keywords:
Monte Carlo algorithm
Spanning tree computation
Counting
Election algorithm
Probabilistic analysis
Splitting and naming

This paper proposes and analyses two fully distributed probabilistic splitting and naming
procedures which assign a label to each vertex of a given anonymous graph G without
any initial knowledge. We prove, in particular, that with probability 1 − o(n−1) (resp. with
probability 1 −o(n−c) for any c ≥ 1) there is a unique vertex with the maximal label in the
graph G having n vertices. In the first case, the size of labels is O (logn) with probability
1 − o(n−1) and the expected value of the size of labels is also O (logn). In the second case,
the size of labels is O

(
(log n)(log∗ n)2

)
with probability 1 − o(n−c) for any c ≥ 1; their

expected size is O
(
(log n)(log∗ n)

)
.

We analyse a basic simple maximum broadcasting algorithm and prove that if vertices of a
graph G use the same probabilistic distribution to choose a label then, for broadcasting
the maximal label over the labelled graph, each vertex sends O (log n) messages with
probability 1 − o(n−1).
From these probabilistic procedures we deduce Monte Carlo algorithms for electing or
computing a spanning tree in anonymous graphs without any initial knowledge and for
counting vertices of an anonymous ring; these algorithms are correct with probability
1 − o(n−1) or with probability 1 − o(n−c) for any c ≥ 1. The size of messages has the
same value as the size of labels. The number of messages is O (m logn) for electing and
computing a spanning tree; it is O (n logn) for counting the vertices of a ring. These
algorithms can be easily extended to also ensure for each vertex v an error probability
bounded by εv ; the error probability εv is decided by v in a totally decentralised way.
We illustrate the power of the splitting procedure by giving a probabilistic election
algorithm for rings having n vertices with identities which is correct and always
terminates; its message complexity is equal to O (n logn) with probability 1 − o(n−1).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The problem

We consider anonymous, and, more generally, partially anonymous networks: unique identities are not available to dis-
tinguish the processes (or we cannot guarantee that they are distinct). We do not assume any global knowledge of the
network, not even its size or an upper bound on its size. The processes have no knowledge on position or distance.

* Corresponding author.
E-mail addresses: metivier@labri.fr (Y. Métivier), robson@labri.fr (J.M. Robson), zemmari@labri.fr (A. Zemmari).

http://dx.doi.org/10.1016/j.tcs.2015.02.016
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.02.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:metivier@labri.fr
mailto:robson@labri.fr
mailto:zemmari@labri.fr
http://dx.doi.org/10.1016/j.tcs.2015.02.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.02.016&domain=pdf

116 Y. Métivier et al. / Theoretical Computer Science 584 (2015) 115–130

In this context, solutions for classical distributed problems, such as the construction of spanning trees, counting or
election, must use probabilistic algorithms. This paper presents and studies splitting and naming procedures which provide
solutions to these problems.

The question of anonymity is often considered when processes must not divulge their identities during execution, due
to privacy concerns or security policy issues [7]. In addition, each process may be built in large scale quantities from which
it is quite infeasible to ensure uniqueness. Therefore, each process must execute the same finite algorithm in the same way,
regardless of its identity, as explained in [1].

1.2. The model

Our model is the usual asynchronous message passing model [5,16]. A network is represented by a simple connected
graph G = (V (G), E(G)) = (V , E) where vertices correspond to processes and edges to direct communication links.

Each process can distinguish different incident edges, i.e., for each u ∈ V there exists a bijection between the neighbours
of u in G and [1, degG(u)] (where degG(u) is the number of neighbours of u in G). The numbers associated by each vertex
to its neighbours are called port-numbers.

Each process v in the network represents an entity that is capable of performing computation steps, sending messages
via some ports and receiving any message via some port that was sent by the corresponding neighbour. We consider
asynchronous systems, i.e., each computation may take an unpredictable (but finite) amount of time. Note that we consider
only reliable systems: no fault can occur on processes or communication links.

In this model, a distributed algorithm is given by a local algorithm that all processes should execute; thus all processes
having the same degree have the same algorithm. A local algorithm consists of a sequence of computation steps interspersed
with instructions to send and to receive messages.

As Tel [16] (p. 71), we define the time complexity by supposing that internal events need zero time units and that the
transmission time (i.e., the time between sending and receiving a message) is at most one time unit. This corresponds to
the number of rounds needed by a synchronous execution of the algorithm.

A probabilistic algorithm is an algorithm which makes some random choices based on some given probability distribu-
tions; non-probabilistic algorithms are called deterministic.

A distributed probabilistic algorithm is a collection of local probabilistic algorithms. Since our networks are anonymous,
if two processes have the same degree their local probabilistic algorithms are identical and have the same probability
distribution.

A Las Vegas algorithm is a probabilistic algorithm which terminates with a positive probability (in general 1) and always
produces a correct result.

A Monte Carlo algorithm is a probabilistic algorithm which always terminates; nevertheless the result may be incorrect
with a certain probability.

Let A be a distributed algorithm. Let G be a network. A configuration is defined by the states of all processes and the
states of all communication links. A terminal configuration is a configuration in which no further steps of A are applicable
(see [16], Chapter 8).

Distributed algorithms presented in this paper are message terminating: algorithms reach a terminal configuration and
processes are not aware that the computation has terminated. We speak of process termination if, when algorithms reach a
terminal configuration, processes are in a terminal state (a state in which there is no event of the process applicable).

Some results on graphs having n vertices are expressed with high probability, meaning with probability 1 −o(n−1) (w.h.p.
for short) or with very high probability, meaning with probability 1 − o(n−c) for any c ≥ 1 (w.v.h.p. for short).

We recall that log∗ n = min{i| log(i) n ≤ 2}, where log(1) n = log n and log(i+1) n = log(log(i) n).
Unless otherwise noted, all logarithms through the paper are to base 2. As usual, the natural logarithm is denoted ln.

1.3. Our contribution

Let G = (V , E) be an anonymous connected graph having n vertices. We assume no knowledge on G .
In the first part of this paper, we propose and analyse the following procedure by which each vertex builds its label.

Each vertex v of G draws a bit bv uniformly at random. Let tv be the number of random draws of bv on the vertex v until
bv = 1; it is called the lifetime of the vertex v . Each vertex v uses its lifetime to draw at random a number idv in the set
{0, . . . , 2tv +3 log(tv) − 1}; finally, v is labelled with the couple (tv , idv).

Let T be the maximal value in the set {tv |v ∈ V (G)}. We prove that w.h.p.:

log n − log (2 ln n) < T < 2 log n + log∗ n.

We prove that, w.h.p., there exists exactly one vertex v such that tv = T and idv > idw for any vertex w different from
v such that tw = T . The size of labels is O (log n) w.h.p. and the expected value of the size of labels is also O (log n).

We also prove that w.v.h.p.: 1
2 log n < T < (log∗ n) log n. If each vertex v draws idv uniformly at random in the set:

{0, . . . , 2tv log∗ tv − 1} then, w.v.h.p., there exists exactly one vertex v such that tv = T and idv > idw for any vertex w
different from v such that tw = T . In this case the size of labels is O ((log n)(log∗ n)2) w.v.h.p.; their expected size is
O ((log n)(log∗ n)).

Download English Version:

https://daneshyari.com/en/article/433885

Download Persian Version:

https://daneshyari.com/article/433885

Daneshyari.com

https://daneshyari.com/en/article/433885
https://daneshyari.com/article/433885
https://daneshyari.com

