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This paper proposes and analyses two fully distributed probabilistic splitting and naming 
procedures which assign a label to each vertex of a given anonymous graph G without 
any initial knowledge. We prove, in particular, that with probability 1 − o(n−1) (resp. with 
probability 1 −o(n−c) for any c ≥ 1) there is a unique vertex with the maximal label in the 
graph G having n vertices. In the first case, the size of labels is O (logn) with probability 
1 − o(n−1) and the expected value of the size of labels is also O (logn). In the second case, 
the size of labels is O  

(
(log n)(log∗ n)2

)
with probability 1 − o(n−c) for any c ≥ 1; their 

expected size is O  
(
(log n)(log∗ n)

)
.

We analyse a basic simple maximum broadcasting algorithm and prove that if vertices of a 
graph G use the same probabilistic distribution to choose a label then, for broadcasting 
the maximal label over the labelled graph, each vertex sends O (log n) messages with 
probability 1 − o(n−1).
From these probabilistic procedures we deduce Monte Carlo algorithms for electing or 
computing a spanning tree in anonymous graphs without any initial knowledge and for 
counting vertices of an anonymous ring; these algorithms are correct with probability 
1 − o(n−1) or with probability 1 − o(n−c) for any c ≥ 1. The size of messages has the 
same value as the size of labels. The number of messages is O (m logn) for electing and 
computing a spanning tree; it is O (n logn) for counting the vertices of a ring. These 
algorithms can be easily extended to also ensure for each vertex v an error probability 
bounded by εv ; the error probability εv is decided by v in a totally decentralised way.
We illustrate the power of the splitting procedure by giving a probabilistic election 
algorithm for rings having n vertices with identities which is correct and always 
terminates; its message complexity is equal to O (n logn) with probability 1 − o(n−1).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The problem

We consider anonymous, and, more generally, partially anonymous networks: unique identities are not available to dis-
tinguish the processes (or we cannot guarantee that they are distinct). We do not assume any global knowledge of the 
network, not even its size or an upper bound on its size. The processes have no knowledge on position or distance.
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In this context, solutions for classical distributed problems, such as the construction of spanning trees, counting or 
election, must use probabilistic algorithms. This paper presents and studies splitting and naming procedures which provide 
solutions to these problems.

The question of anonymity is often considered when processes must not divulge their identities during execution, due 
to privacy concerns or security policy issues [7]. In addition, each process may be built in large scale quantities from which 
it is quite infeasible to ensure uniqueness. Therefore, each process must execute the same finite algorithm in the same way, 
regardless of its identity, as explained in [1].

1.2. The model

Our model is the usual asynchronous message passing model [5,16]. A network is represented by a simple connected 
graph G = (V (G), E(G)) = (V , E) where vertices correspond to processes and edges to direct communication links.

Each process can distinguish different incident edges, i.e., for each u ∈ V there exists a bijection between the neighbours 
of u in G and [1, degG(u)] (where degG(u) is the number of neighbours of u in G). The numbers associated by each vertex 
to its neighbours are called port-numbers.

Each process v in the network represents an entity that is capable of performing computation steps, sending messages 
via some ports and receiving any message via some port that was sent by the corresponding neighbour. We consider 
asynchronous systems, i.e., each computation may take an unpredictable (but finite) amount of time. Note that we consider 
only reliable systems: no fault can occur on processes or communication links.

In this model, a distributed algorithm is given by a local algorithm that all processes should execute; thus all processes 
having the same degree have the same algorithm. A local algorithm consists of a sequence of computation steps interspersed 
with instructions to send and to receive messages.

As Tel [16] (p. 71), we define the time complexity by supposing that internal events need zero time units and that the 
transmission time (i.e., the time between sending and receiving a message) is at most one time unit. This corresponds to 
the number of rounds needed by a synchronous execution of the algorithm.

A probabilistic algorithm is an algorithm which makes some random choices based on some given probability distribu-
tions; non-probabilistic algorithms are called deterministic.

A distributed probabilistic algorithm is a collection of local probabilistic algorithms. Since our networks are anonymous, 
if two processes have the same degree their local probabilistic algorithms are identical and have the same probability 
distribution.

A Las Vegas algorithm is a probabilistic algorithm which terminates with a positive probability (in general 1) and always 
produces a correct result.

A Monte Carlo algorithm is a probabilistic algorithm which always terminates; nevertheless the result may be incorrect 
with a certain probability.

Let A be a distributed algorithm. Let G be a network. A configuration is defined by the states of all processes and the 
states of all communication links. A terminal configuration is a configuration in which no further steps of A are applicable 
(see [16], Chapter 8).

Distributed algorithms presented in this paper are message terminating: algorithms reach a terminal configuration and 
processes are not aware that the computation has terminated. We speak of process termination if, when algorithms reach a 
terminal configuration, processes are in a terminal state (a state in which there is no event of the process applicable).

Some results on graphs having n vertices are expressed with high probability, meaning with probability 1 −o(n−1) (w.h.p. 
for short) or with very high probability, meaning with probability 1 − o(n−c) for any c ≥ 1 (w.v.h.p. for short).

We recall that log∗ n = min{i| log(i) n ≤ 2}, where log(1) n = log n and log(i+1) n = log(log(i) n).
Unless otherwise noted, all logarithms through the paper are to base 2. As usual, the natural logarithm is denoted ln.

1.3. Our contribution

Let G = (V , E) be an anonymous connected graph having n vertices. We assume no knowledge on G .
In the first part of this paper, we propose and analyse the following procedure by which each vertex builds its label. 

Each vertex v of G draws a bit bv uniformly at random. Let tv be the number of random draws of bv on the vertex v until 
bv = 1; it is called the lifetime of the vertex v . Each vertex v uses its lifetime to draw at random a number idv in the set 
{0, . . . , 2tv +3 log(tv ) − 1}; finally, v is labelled with the couple (tv , idv).

Let T be the maximal value in the set {tv |v ∈ V (G)}. We prove that w.h.p.:

log n − log (2 ln n) < T < 2 log n + log∗ n.

We prove that, w.h.p., there exists exactly one vertex v such that tv = T and idv > idw for any vertex w different from 
v such that tw = T . The size of labels is O (log n) w.h.p. and the expected value of the size of labels is also O (log n).

We also prove that w.v.h.p.: 1
2 log n < T < (log∗ n) log n. If each vertex v draws idv uniformly at random in the set: 

{0, . . . , 2tv log∗ tv − 1} then, w.v.h.p., there exists exactly one vertex v such that tv = T and idv > idw for any vertex w
different from v such that tw = T . In this case the size of labels is O ((log n)(log∗ n)2) w.v.h.p.; their expected size is 
O ((log n)(log∗ n)).
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