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The surveillance game [4] models the problem of web-page prefetching as a pursuit evasion 
game played on a graph. This two-player game is played turn-by-turn. The first player, 
called the observer, can mark a fixed amount of vertices at each turn. The second one 
controls a surfer that stands at vertices of the graph and can slide along edges. The 
surfer starts at some initially marked vertex of the graph, its objective is to reach an 
unmarked node before all nodes of the graph are marked. The surveillance number sn(G)

of a graph G is the minimum amount of nodes that the observer has to mark at each 
turn ensuring it wins against any surfer in G . Fomin et al. also defined the connected 
surveillance game where the observer must ensure that marked nodes always induce a 
connected subgraph. They ask what is the cost of connectivity, i.e., is there a constant 
c > 0 such that the ratio between the connected surveillance number csn(G) and sn(G) is 
at most c for any graph G . It is straightforward to show that csn(G) ≤ � sn(G) for any 
graph G with maximum degree �. Moreover, it has been shown that there are graphs G
for which csn(G) = sn(G) + 1. In this paper, we investigate the question of the cost of the 
connectivity.
We first provide new non-trivial upper and lower bounds for the cost of connectivity in 
the surveillance game. More precisely, we present a family of graphs G such that csn(G) >
sn(G) + 1. Moreover, we prove that csn(G) ≤ √

sn(G)n for any n-node graph G . While the 
gap between these bounds remains huge, it seems difficult to reduce it. We then define the 
online surveillance game where the observer has no a priori knowledge of the graph topology 
and discovers it little-by-little. This variant, which fits better the prefetching motivation, 
is a restriction of the connected variant. Unfortunately, we show that no algorithm for 
solving the online surveillance game has competitive ratio better than Ω(�). That is, while 
interesting, this variant does not help to obtain better upper bounds for the connected 
variant. We finally answer an open question [4] by proving that deciding if the surveillance 
number of a digraph with maximum degree 6 is at most 2 is NP-hard.
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1. Introduction

In this paper, we study two variants of the surveillance game introduced in [4]. This two-player game involves one Player 
moving a mobile agent, called surfer, along the edges of a graph, while a second Player, called observer, marks the vertices 
of the graph. The surfer wins if it manages to reach an unmarked vertex. The observer wins otherwise.

Surveillance game. More formally, let G = (V , E) be an undirected simple n-node graph, v0 ∈ V , and k ∈ N
∗ . Initially, the 

surfer stands at v0 which is marked and all other nodes are not marked. Then, turn-by-turn, the observer first marks k
unmarked vertices and then the surfer may move to a neighbour of its current position. Once a node has been marked, 
it remains marked until the end of the game. The surfer wins if, at some step, it reaches an unmarked vertex; and the 
observer wins otherwise. Note that the game lasts at most �n

k � turns. When the game is played on a directed graph, 
the surfer has to follow arcs when it moves [4]. A k-strategy for the observer from v0, or simply a k-strategy from v0, is a 
function σ : V × 2V → 2V that assigns the set σ(v, M) ⊆ V of vertices, |σ(v, M)| ≤ k, that the observer should mark in the 
configuration (v, M), where M ⊆ V , v0 ∈ M , is the set of already marked vertices and v ∈ M is the current position of the 
surfer. We emphasize that σ depends implicitly on the graph G , i.e., it is based on the full knowledge of G . A k-strategy 
from v0 is winning if it allows the observer to win whatever be the sequence of moves of the surfer starting in v0. The 
surveillance number of a graph G with initial node v0, denoted by sn(G, v0), is the smallest k such that there exists a 
winning k-strategy starting from v0.

Let us define some notations used in the paper. Let � be the maximum degree of the nodes in G and, for any v ∈ V , 
let N(v) be the set of neighbours of v . More generally, the neighbourhood N(F ) of a set F ⊆ V is the subset of vertices of 
V \ F which have a neighbour in F . Moreover, we define the closed neighbourhood of a set F as N[F ] = N(F ) ∪ F .

As an example, let us consider the following basic strategy: let σB be the strategy defined by σB(v, M) = N(v) \ M for 
any M ⊆ V , v0 ∈ M , and v ∈ M . Intuitively, the basic strategy σB asks the observer to mark all unmarked neighbours of the 
current position of the surfer. It is straightforward, and it was already shown in [4], that σB is a winning strategy for any 
v0 ∈ V and it easily implies that sn(G, v0) ≤ max{|N(v0)|, � − 1}.

Web-page prefetching, connected and online variants. The surveillance game has been introduced because it models the 
web-page prefetching problem. This problem can be stated as follows. A web-surfer is following the hyperlinks in the 
digraph of the web. The web-browser aims at downloading the web-pages before the web-surfer accesses it. The number of 
web-pages that the browser may download before the web-surfer accesses another web-page is limited due to bandwidth 
constraints. Therefore, designing efficient strategies for the surveillance game would allow to preserve bandwidth while, at 
the same time, avoiding the waiting time for the download of the web-page the web-surfer wants to access.

By nature of the web-page prefetching problem, in particular because of the huge size of the web digraph, it is not 
realistic to assume that a strategy may mark any node of the network, even nodes that are “far” from the current position 
of the surfer. For this reason, [4] defines the connected variant of the surveillance game. A strategy σ is said connected if 
σ(v, M) ∪ M induces a connected subgraph of G for any M , v0 ∈ M ⊆ V (G). Note that the basic strategy σB is connected. 
The connected surveillance number of a graph G with initial node v0, denoted by csn(G, v0), is the smallest k such that there 
exists a winning connected k-strategy starting from v0. By definition, csn(G, v0) ≥ sn(G, v0) for any graph G and v0 ∈ V (G). 
In [4], it is shown that there are graphs G and v0 ∈ V (G) such that csn(G, v0) = sn(G, v0) + 1. Only the trivial upper bound 
csn(G, v0) ≤ � sn(G, v0) is known and a natural question is how big the gap between csn(G, v0) and sn(G, v0) may be [4]. 
This paper provides a partial answer to this question.

Still the connected surveillance game seems unrealistic since the web-browser cannot be asked to have the full knowl-
edge of the web digraph. For this reason, we define the online surveillance game. In this game, the observer discovers the 
considered graph while marking its nodes. That is, initially, the observer only knows the starting node v0 and its neigh-
bours. After the observer has marked the subset M of nodes, it knows M and the vertices that have a neighbour in M and 
the next set of vertices to be marked depends only on this knowledge, i.e., the nodes at distance at least two from M are 
unknown. In other words, an online strategy is based on the current position of the surfer, the set of already marked nodes 
and knowing only the subgraph H of the marked nodes and their neighbours (a more formal definition is postponed to 
Section 3). By definition, the next nodes marked by such a strategy must be known, i.e., adjacent to an already marked ver-
tex. Therefore, an online strategy is connected. We are interested in the competitive ratio of winning online strategies. The 
competitive ratio ρ(S) of a winning online strategy S is defined as ρ(S) = maxG,v0∈V (G)

S(G,v0)
sn(G,v0)

, where S(G, v0) denotes 
the maximum number of vertices marked by S in G at each turn, when the surfer starts in v0. Note that, because any 
online winning strategy S is connected, csn(G, v0) ≤ ρ(S) sn(G, v0) for any graph G and v0 ∈ V (G).

1.1. Related work

The surveillance game has mainly been studied in the computational complexity point of view. It is shown that the 
problem of computing the surveillance number is NP-hard in split graphs [4,5]. Moreover, deciding whether the surveil-
lance number is at most 2 is NP-hard in chordal graphs and deciding whether the surveillance number is at most 4 is 
PSPACE-complete. Polynomial-time algorithms that compute the surveillance number in trees and interval graphs are de-
signed in [4]. All previous results also hold for the connected surveillance number. Finally, it is shown that, for any graph G
and v0 ∈ V (G), max� |N[S]|−1

|S| � ≤ sn(G, v0) ≤ csn(G, v0) where the maximum is taken over every subset S ⊆ V (G) inducing 
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