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Extra connectivity and conditional diagnosability are two crucial subjects for a multi-
processor system’s ability to tolerate and diagnose faulty processors. The extra connectivity 
and the conditional diagnosability of many well-known multiprocessor systems have been 
widely investigated. In this paper, the relationship between the extra connectivity and the 
conditional diagnosability of regular graphs is explored. We establish that the conditional 
diagnosability under the comparison model is equal to the 2-extra connectivity. Finally, we 
give empirical analysis on the extra connectivity and conditional diagnosability of some 
graphs by our proposed relationship.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The extra connectivity is an effective measure of the reliability of a multiprocessor network. The conditional diagnosability
has also played an important role in measuring the reliability of a multiprocessor system.

The extra connectivity was investigated by Fàbrega and Fiol [7], which is an important indicator of the robustness of a 
multiprocessor system in the presence of failing processors and overcomes the shortcomings for the connectivity [10]. The 
connectivity [10] tacitly assumes that all vertices adjacent to the same vertex could fail at the same time, but that is almost 
impossible in practical network applications. Consequently, the classical connectivity is not suitable for large-scale processing 
systems. The extra connectivity of various classes of graphs have been studied in recent years [3,4,13,18,23,29,30,32,35,38].

The ability to identify all faulty processors in a multiprocessor system is known as system-level diagnosis. Several system-
level diagnosis models have been proposed for till now. One important model, namely the PMC (Preparata, Metze, and Chien) 
model, proposed by Preparata, Metze, and Chien [26], assumes that each vertex can only test its neighboring vertices, and 
the test results are either “faulty” or “fault-free”. Another major diagnosis approach, proposed by Malek and Maeng [24,25], 
is called the comparison model. This diagnosis model assumes that each vertex can test its neighboring vertices by sending 
the same input to each pair of its distinct neighbors and then compare their responses. After a system has been diagnosed, 
identified faulty vertices are replaced with fault-free vertices.

The conditional diagnosability was proposed by Lai et al. [17] to better reflect the system’s self-diagnostic capability under 
more practical assumptions, which overcomes the shortcomings for the diagnosability [8,9]. The classical diagnosability [8,
9] of a network is quite small, because it imposes no conditions on the distribution pattern of faults. The conditional 
diagnosability is widely accepted as a new measure of diagnosability by assuming that any set of faulty vertices cannot 
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contain all neighboring vertices of any vertex in a multiprocessor system. The conditional diagnosability of various classes 
of systems under the comparison model [6,12,14–16,20,31,33,34,36] have been extensively studied in recent years.

Based on the importance of the extra connectivity and the conditional diagnosability, our goal is to propose the relation-
ship between extra connectivity and conditional diagnosability of regular graphs with some basic conditions. It is motivated 
by the recent researches on the extra connectivity and conditional diagnosability of some graphs, including hypercubes [30], 
bijective connection networks (BC networks) [29], alternating group graphs [11,23], dual-cubes [35] and Split-Star Net-
works [21,22].

The major contributions of this paper are as follows:

• We propose the fault tolerant properties of regular graphs with some basic conditions.
• We establish that the conditional diagnosability under the comparison model is equal to the 2-extra connectivity of 

regular graphs.
• We give empirical analysis on the extra connectivity and conditional diagnosability of star graphs by our proposed 

relationship, and show that the 2-extra connectivity of Sn (n ≥ 10) is 3n − 7.
• We give empirical analysis on the extra connectivity and conditional diagnosability of the Cayley graphs generated by 

transposition trees by our proposed relationship, and show that the 2-extra connectivity of Cayley graphs generated by 
transposition trees (n ≥ 10) is 3n − 8.

Organization. The remainder of this paper is organized as follows. Section 2 introduces terminology and notations that will 
be used throughout this paper. Section 3 proposes the fault tolerant properties of regular graphs with some basic conditions. 
Section 4 establishes the relationship between the extra connectivity and the conditional diagnosability. Section 5 gives 
empirical analysis. Section 6 concludes the paper.

2. Preliminaries

2.1. Terminology and notations

A graph G = (V (G), E(G)) is often applied to represent the topology of a multiprocessor system, where V (G) is the 
vertex-set of G , elements in which are called vertices of G; E(G) is the edge-set of G , elements in which are called edges 
of G . Let |V (G)| be the order of G and |E(G)| be the size of G . For notations and terminology not defined here please refer 
to [28].

Two vertices corresponding an edge are called the end-vertices of the edge. If at least one end-vertex of an edge is faulty, 
the edge is said to be faulty; otherwise, the edge is said to be fault-free. The distance between vertex u and vertex v , denoted 
by d(u, v), is the length of a shortest path between u and v in G . If the length of a path (resp. cycle) of G is n, then we call 
the path (resp. cycle) as an n-path (resp. n-cycle). The girth of G , denoted by g(G), is the minimum length of cycles in G .

Let S be a subset of V (G), whose size is denoted as |S|. The induced subgraph by S , denoted by G[S], is a subgraph of 
G whose vertex-set is S and whose edge-set E(G[S]) = {uv | uv ∈ E(G), u, v ∈ S}. Let G1, G2, . . . , Gm be m subgraphs of G , 
we set

∪m
i=1Gi = G[∪m

i=1 V (Gi)] and ∩m
i=1 Gi = G[∩m

i=1 V (Gi)].
For any subset F of V (G), the notation G − F denotes a graph obtained by removing all vertices in F from G and deleting 
those edges with at least one end-vertex in F , simultaneously. Let M and N be any two distinct subsets of V (G). The 
symmetric difference set of M and N , denoted by M � N , is the union of M − N and N − M , i.e., M � N = (M − N) ∪ (N − M) =
{x | x ∈ M ∪ N, x /∈ M ∩ N}. The cross edges between M and N , denoted by E[M, N], is the set of all edges between M
and N . For any vertex u of a graph G = (V (G), E(G)), the neighborhood of u in G , denoted by NG (u), is defined as a set of 
all vertices which are adjacent to u, i.e., NG (u) = {v ∈ V (G) | uv ∈ E(G)}. We define

NG(S) = {v ∈ V (G) − S | ∃u ∈ S, uv ∈ E(G)}
=

⋃

u∈S

NG(u) − S.

Let NG [u] = NG(u) ∪ {u} be the closed neighborhood of u in G and NG [S] = NG(S) ∪ S . When G is clear from the context, 
we use N(v), N(S), N[v] and N[S] to replace NG(v), NG(S), NG [v] and NG [S], respectively. We also denote, by |N(u)|, the 
degree d(u) of u. Let �(G) (resp. δ(G)) refer to the maximum (resp. minimum) degree of vertices in G . For any one subset 
V ′ ⊂ V (G), the set of private neighbors of one vertex v ∈ V ′ , denoted by PNV ′ (v), is the set of those neighbors of v which 
are not shared by other vertices in V ′ and are not themselves in V ′ , i.e., PNV ′ (v) = N(v) − (N(V ′ − {v}) ∪ V ′). For any two 
vertices u and v in G , let cn(u, v) be the number of common neighbors of u and v . Let cn(G) = max{cn(u, v) | u, v ∈ V (G)}. 
If a graph G such that cn(u, v) ≤ 2 for any uv /∈ E(G) and cn(u, v) ≤ 1 for any uv ∈ E(G), then the graph G is called as a 
2-cn-graph.

A subset F ⊂ V (G) is called a fault-set if each vertex in F is faulty. A subset F ⊂ V (G) is called a conditional fault-set, if 
all vertices of set F are faulty and N(v) � F for any v ∈ V (G). We say that (F1, F2) is a conditional fault-pair, when F1 and 
F2 are conditional fault-sets.
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