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Today, service compositions often need to be assembled or changed on-the-fly, which 
leaves only little time for quality assurance. Moreover, quality assurance is complicated 
by service providers only giving information on their services in terms of domain specific
concepts with only limited semantic meaning.
In this paper, we propose a method for constructing service compositions based on pre-
verified templates. Templates, given as workflow descriptions, are typed over a (domain-
independent) template ontology defining concepts and predicates. Their meaning is defined 
by an abstract semantics, leaving the specific meaning of ontology concepts open, however, 
only up to given ontology rules. Templates are proven correct using a Hoare-style proof 
calculus, extended by a specific rule for service calls. Construction of service compositions 
amounts to instantiation of templates with domain-specific services. Correctness of an 
instantiation can then simply be checked by verifying that the domain ontology (a) adheres 
to the rules of the template ontology, and (b) fulfills the constraints of the employed 
template.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Concepts like component-based software engineering (CBSE) or service-oriented architectures (SOA) ease the construc-
tion of software by combining off-the-shelf components or services to compositions. Today, such compositions often need 
to be assembled or changed on-the-fly, thereby imposing strong timing constraints on quality assurance, resulting from the 
need of fully automated verification and validation systems. “Quality” of service compositions might refer to either non-
functional properties (like performance [1]), or functional requirements like adherence to protocols (e.g., [2]), to given pre-
and postconditions [3], or to properties specified with temporal logic [4]. Quality assurance methods typically translate the 
composition (e.g., an architecture model, or a workflow description) into an analysis model, which captures the semantics 
of the composition. At the best, the quality analysis can be carried out automatically.

Both the transformation into the analysis model and the analysis itself are time-costly and thus difficult to apply in on-
the-fly composition scenarios. Additionally, depending on the analysis model, automatic analysis it not necessarily possible 
(e.g., when using theorem provers).
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Fig. 1. Standard scenario: Full analysis for every composition (a). Our approach: Full analysis for templates (b), then check side conditions during instantia-
tion (c).

In this paper, we propose a technique for service composition and analysis based on templates. Templates can capture 
known compositional patterns, and thus allow for the generally proven principle of pattern usage in software engineer-
ing [5]. In this paper, templates are workflow descriptions with service placeholders, which are replaced by concrete services 
during instantiation. If a template is shown to be correct, then all of its (valid) instantiations will be correct by construc-
tion. Every template specification contains pre- and postconditions (with associated meaning “if precondition fulfilled then 
postcondition guaranteed”), and a correct template provably adheres to this specification. To verify correctness of templates, 
we provide a Hoare-style proof calculus as a means to prove their correctness. Fig. 1 gives an overview on the motivating 
scenario.

The definition of “correctness” as well as giving a proof calculus for templates, however, poses a non-trivial task on 
verification. Since templates should be usable in a wide range of contexts and the instantiations of service placeholders are 
unknown at template design time, we cannot give a fixed semantics to templates. Rather, the template semantics needs 
to be parameterized in usage context and service instantiation. A template is only correct if it is correct for all (allowed) 
usage contexts. Similarly, a useful proof calculus has to be applicable in all possible contexts and service instantiations. We 
guarantee this by defining a proof calculus which is parameterized in usage contexts and template-specific constraints.

Technically, we capture the usage contexts by ontologies, and the interpretation of concepts and predicates occurring 
therein by logical structures. A template ontology defines the concepts and predicates of a template. Furthermore, a template 
specification contains constraints defining additional conditions on instantiations. These constraints allow us to verify the 
correctness of the template despite unknown usage and unknown fixed semantics. A template instantiation replaces the 
template ontology with a homomorphous domain ontology, and the service placeholders with concrete services of this do-
main. Verification of the instantiation then amounts to checking whether the (instantiated) template constraints are valid 
within the domain ontology, and thus can be carried out on-the-fly.

Section 2 describes ontologies and logical structures. Section 3 continues with the syntax of templates, and Section 4
proceeds with their semantics and correctness. Section 5 presents a proof calculus for templates, Section 6 an approach to 
utilize SMT solvers for proof automation. Section 7 explains instantiation and presents the central result of our approach: 
instantiation of correct templates yields correct service compositions, if constraints are respected. Section 8 discusses related 
work and an empirical approach to the same problem, and Section 9 concludes. This article is an extended version of [6], 
in addition giving a proof calculus for templates and proving soundness of this calculus with respect to the parameterized 
semantics of templates, as well as giving a translation to a SAT/SMT problem for automatic correctness checks.

2. Foundations

We assume service compositions to be assembled of services which are specified by a signature and pre- and postcon-
ditions. Languages to describe signatures with pre- and postconditions are already in use (e.g., OWL-S [3]). Such service 
descriptions usually rely on domain specific concepts. Services in use in a tourism domain might use concepts like restau-
rant, hotel and flight while those being employed in a medical domain use concepts like patient, medication and therapy. 
Ontologies are used to formally specify conceptualizations of domain knowledge [7]; their semantics can for instance be 
defined by description logics [8]. Ontologies can thus serve as a precise means of specifying our usage context of service 
compositions.

Simple notions of ontologies can be formalized using RDF (Ressource Description Framework, [9]), though typically the 
Web Ontology Language (OWL, [10,11]) is used. Basically, RDF allows for the specification of triples, relating two concepts
with a role, or predicate. OWL is built on top of RDF, and comes with additional constructs for more high-level expressions 
like, e.g., transitivity of roles. Both RDF and OWL are W3C1 recommendations.

There are complex relationships between concepts of an ontology which cannot be expressed by OWL. Therefore, rule 
languages of different expressivity are a topic of ontological research. A typical rule language is the Semantic Web Rule 
Language (SWRL, [12]), a W3C submission since 2004. It is built on top of OWL, and adds constructs to create implication-

1 World Wide Web Consortium, http :/ /www.w3 .org.
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