
Science of Computer Programming 127 (2016) 24–49

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A formal approach for managing component-based 

architecture evolution

Abderrahman Mokni a,∗, Christelle Urtado a,∗, Sylvain Vauttier a,∗, 
Marianne Huchard b, Huaxi Yulin Zhang c

a LGI2P, Ecole Nationale Supérieure des Mines Alès, Nîmes, France
b LIRMM, CNRS and Université de Montpellier, Montpellier, France
c Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 February 2015
Received in revised form 4 March 2016
Accepted 8 March 2016
Available online 18 March 2016

Keywords:
Architecture evolution
Architecture analysis
Evolution rules
Formal models
MDE

Software architectures are subject to several types of change during the software lifecycle 
(e.g. adding requirements, correcting bugs, enhancing performance). The variety of these 
changes makes architecture evolution management complex because all architecture 
descriptions must remain consistent after change. To do so, whatever part of the 
architectural description they affect, the effects of change have to be propagated to the 
other parts. The goal of this paper is to provide support for evolving component-based 
architectures at multiple abstraction levels. Architecture descriptions follow an architectural 
model named Dedal, the three description levels of which correspond to the three main 
development steps – specification, implementation and deployment. This paper formalizes 
an evolution management model that generates evolution plans according to a given 
architecture change request, thus preserving consistency of architecture descriptions and 
coherence between them. The approach is implemented as an Eclipse-based tool and 
validated with three evolution scenarios of a Home Automation Software example.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Component-based software development (Cbsd) promotes a reuse-based approach to defining, implementing and com-
posing loosely coupled independent software components into whole software systems [1]. While component reuse is crucial 
to shorten large-scale software systems development time, handling evolution in such processes is a significant issue [2]. 
Indeed, software systems have to evolve to extend their functionalities, correct bugs, improve performance and quality, or 
adapt to their environment. While unavoidable, software changes may engender several inconsistencies and system dysfunc-
tion if not analyzed and handled carefully. In turn, an ill-mastered evolution engenders software degradation, the loss of its 
evolvability and then its phase-out [3].

A famous problem of software evolution is software architecture erosion [4,5]. It arises when modifications of the soft-
ware implementation violate the design principles captured by its architecture. To increase confidence in reuse-centered, 
component-based software systems, all architecture descriptions must remain consistent and coherent with each other after 
every change.

* Corresponding authors.
E-mail addresses: Abderrahman.Mokni@mines-ales.fr (A. Mokni), Christelle.Urtado@mines-ales.fr (C. Urtado), Sylvain.Vauttier@mines-ales.fr (S. Vauttier), 

Marianne.Huchard@lirmm.fr (M. Huchard), yulin.zhang@u-picardie.fr (H.Y. Zhang).

http://dx.doi.org/10.1016/j.scico.2016.03.003
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.03.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:Abderrahman.Mokni@mines-ales.fr
mailto:Christelle.Urtado@mines-ales.fr
mailto:Sylvain.Vauttier@mines-ales.fr
mailto:Marianne.Huchard@lirmm.fr
mailto:yulin.zhang@u-picardie.fr
http://dx.doi.org/10.1016/j.scico.2016.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2016.03.003&domain=pdf


A. Mokni et al. / Science of Computer Programming 127 (2016) 24–49 25

While a lot of work has been dedicated to architectural modeling and evolution, there still is a lack of means and 
techniques to tackle architectural inconsistencies, and erosion in particular. Indeed, most existing approaches to architecture 
evolution hardly support the whole life-cycle of component-based software and only enable evolution of early stage models 
by propagating change impact to runtime models while evolution of runtime models are not fully dealt with, thus increasing 
the risks of architecture erosion.

This paper proposes an approach and its implementation to automatically manage component-based architecture evolu-
tion at multiple abstraction levels in a manner that preserves architecture consistency and coherence all along the software 
lifecycle. The approach is based on the Dedal [6,7] architectural model that explicitly models architectures at three abstrac-
tion levels, each corresponding to one of the three major steps of Cbsd – specification, implementation and deployment, thus 
granting a full evolution management process. Given a change request at any abstraction level, it transforms Dedal models 
into B formal models to analyze the requested change and generates an evolution plan that guarantees the consistency of 
architecture descriptions and the coherence between them. The proposed approach is centered on a formal evolution man-
agement model that includes the generated B models, the architecture properties to preserve and a set of evolution rules. 
It is implemented as an Eclipse-based tool that generates B models from diagrammatic Dedal models and uses our specific 
solver to resolve architecture evolution. The overall approach is illustrated with a Home Automation Software case-study.

The remainder of this paper outlines as follows: Section 2 presents the background of this work. Section 3 presents 
our proposal to tackle multi-level architecture evolution (i.e. the evolution of architecture definitions composed of multiple 
description levels) while Section 4 presents the implemented tool and experiments on three evolution scenarios. Section 5
discusses related work and finally, Section 6 concludes the paper and discusses future work.

2. Background

Our approach combines the use of Dedal to model software architectures and B to support automated analysis and 
verification. This section briefly introduces these languages.

2.1. The Dedal architecture model

2.1.1. Component-based software development by reuse
Cbsd follows the reuse-in-the-large principle. Reusing existing (off-the-shelf) software components [8] therefore becomes 

the central concern during development. Traditional software development processes cannot be used as is and must be 
adapted to component reuse [1]. Fig. 1 illustrates our vision of such a development process which is classically divided in 
two:

• the component development process (referred to as software component development for reuse), which will not be 
detailed in the sequel. This development process produces components that are stored in repositories for later use by 
the software development process.

• the software development process (referred to as software development by component reuse) that describes how pre-
viously developed software components can be used for software development (and how this reuse impacts the way 
software is built).

Dedal is a novel architectural model and Adl [6,7] that targets reuse-centered development. It covers the whole soft-
ware development by component reuse life-cycle. The main idea of Dedal is to build a concrete architecture composed 
of stored and indexed components that are found in a component repository as candidates to satisfy the design decisions 
specified in an intended architecture specification. The resulting concrete architecture can then be instantiated and deployed 
in multiple contexts. Therefore, Dedal proposes a three-step approach for specifying, implementing and deploying software 
architectures.

2.1.2. Dedal abstraction levels
To illustrate the concepts of Dedal, we propose to model a home automation software (Has) that manages comfort 

scenarios, which automatically controls buildings’ lighting and heating depending on time and ambient temperature. For 
this purpose, we propose an architecture with an orchestrator component that interacts with the appropriate devices to 
implement the desired scenario.

The abstract architecture specification is the first level of software architecture descriptions. It is abstract: it represents the 
architecture as imagined by the architect to meet the requirements of the future software. In Dedal, the architecture speci-
fication is composed of component roles, their connections and the expected global behavior. Component roles are abstract 
and partial component type specifications. Consequently, the provided interfaces of each role are to be connected to com-
patible required interfaces. Component roles are identified by the architect in order to search for and select corresponding 
concrete components in the next step. Fig. 2-a shows a possible Has architecture specification. In this specification, five 
component roles are identified. A component playing the HomeOrchestrator role controls four components playing the Light, 
Time, Thermometer and CoolerHeater roles.



Download English Version:

https://daneshyari.com/en/article/433903

Download Persian Version:

https://daneshyari.com/article/433903

Daneshyari.com

https://daneshyari.com/en/article/433903
https://daneshyari.com/article/433903
https://daneshyari.com

