
Science of Computer Programming 127 (2016) 76–102

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Algorithmic verification of procedural programs in the 

presence of code variability

Siavash Soleimanifard ∗, Dilian Gurov ∗

KTH Royal Institute of Technology, Stockholm, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2015
Received in revised form 24 August 2015
Accepted 26 August 2015
Available online 16 September 2015

Keywords:
Compositional verification
Model checking
Maximal models

We present a generic framework for verifying temporal safety properties of procedural 
programs that are dynamically or statically configured by replacing, adapting, or adding 
new components. To deal with such a variability of a program, we require programmers 
to provide local specifications for its variable components, and verify the global properties 
by replacing these specifications with maximal models. Our framework is a generalization 
of a previously developed framework that fully abstracts from program data. In this work, 
we recapture program data and thus significantly increase the range of properties that 
can be verified. Our framework is generic by being parametric on the set of observed 
program events and their semantics. We separate program structure from the behaviour
it induces to facilitate independent component specification and verification. To exemplify 
the use of the framework, we develop three concrete instantiations; in particular, we derive 
a compositional verification technique for programs written in a procedural language with 
pointers as the only datatype.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In modern computing systems code changes frequently. Components evolve rapidly or exist in multiple versions cus-
tomized for different users, and in open and mobile contexts a system may even automatically reconfigure itself. As a result, 
systems are no longer developed as monolithic applications; instead they are composed of ready-made off-the-shelf compo-
nents, and each component may be dynamically replaced by a new one that provides improved or additional functionality. 
The design and implementation of systems with such static and dynamic variability has been attracting considerable atten-
tion over the past years. However, there has been less attention on their formal verification. In this paper, we develop a 
generic framework for the verification of temporal safety properties of such systems.

The verification of variable systems is challenging because the code of the variable components is either not available 
at verification time or changes frequently. Therefore, an ideal verification technique for such systems should (i) localize the 
verification of variable components, and (ii) relativize the global properties of the system on the correctness of its variable 
components. This can be achieved through a compositional verification scheme where system components are specified lo-
cally and verified independently, while the correctness of its global properties is inferred from these local specifications, thus 
allowing an independent evolution of the implementations of individual components, only requiring the re-establishment of 
their local correctness.

* Corresponding authors.
E-mail addresses: siavashs@csc.kth.se (S. Soleimanifard), dilian@csc.kth.se (D. Gurov).

http://dx.doi.org/10.1016/j.scico.2015.08.010
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.08.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:siavashs@csc.kth.se
mailto:dilian@csc.kth.se
http://dx.doi.org/10.1016/j.scico.2015.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.08.010&domain=pdf


S. Soleimanifard, D. Gurov / Science of Computer Programming 127 (2016) 76–102 77

One algorithmic technique that realizes the above verification scheme is to replace the local specifications of the variable 
components by so-called maximal models [19], and then to model check the resulting system against the global properties 
of interest. Maximal models are the most general program models (for the purposes of verifying global properties from a 
given property class) that satisfy the corresponding local specifications. Such models are only guaranteed to exist and be 
unique in well-chosen set-ups (like the present one). The two main bottlenecks of the technique are (i) the high cost of 
computing maximal models from local specifications, and (ii) the added burden to the programmer of producing component 
specifications.

In previous work (see e.g. [21,23,20]) we developed a maximal model based technique for the verification of temporal 
safety properties of procedural programs, based on a program model that focuses purely on control flow and abstracts 
away all program data. This rather drastic abstraction was chosen as a first step in the realization of the compositional 
verification scheme discussed above, and was motivated by considerations of efficiency of maximal model construction and 
model checking (notice that the state space can still be infinite due to possible unbounded recursion), and of easiness of 
specification. It made possible the fully automated tool-based verification of procedural programs for control flow based 
temporal safety properties (see e.g. [35]). An example of such a property over sequences of method invocations that does 
not involve data is: “method m1 is not called after method m2 is called”.

Abstracting away from all program data, however, significantly impacts the range of properties that can be handled. 
Properties that involve program data, such as “method m1 is called only if variable V is not pointing to null”, cannot 
be specified and verified. In the present work, we generalize our previous technique to re-capture program data, thus 
bringing the usability of our work to a whole new level. This generalization has to be performed in a controlled fashion, 
carefully avoiding unnecessary computational blow-up, as we show in Section 2. Incorporating program data, if done in 
the straightforward fashion, makes the maximal model construction and property specification impractical: the program 
models and properties become too detailed and large, maximal model construction becomes unmanageably complex, and 
the program models become overly specific to the given programming language. Our present proposal re-captures program 
data without adding extra complexity to the maximal model construction, and keeps the effort of property specification 
within practical limits.

We propose a control flow model that is parametric on a set of actions that model (observable) user-selected instruc-
tion types, and on Hoare-style state assertions that capture abstractly the effect of sequences of (unobservable) statements 
between consecutive actions. We combine the abstraction provided by assertions with the precision provided by actions 
to define a uniform control flow graph representation of programs that can be tuned to the verification of the properties 
of interest.1 The abstraction provided by assertions avoids the local specifications to become overly verbose, and allows to 
capture program data without adding complexity to the maximal model construction.

We present three instantiations of our generic verification framework. The first one abstracts away all data, showing 
the presented framework to be a proper generalization of the original framework [21]. The second instantiation is for 
Boolean programs [10], illustrating how our generic framework can handle data from finite domains. In the third and most 
challenging instantiation we exemplify the use of our framework for the verification of programs written in a procedural 
language called PoP [33] that has pointers as the only datatype. Dealing with this language is challenging because, in 
addition to unbounded call stacks, it can give rise to infinite state spaces for yet another reason, namely unbounded pointer 
creation. Still, the model checking problem has been shown to be decidable for PoP programs. This instantiation shows how 
our framework can cope with data from certain infinite domains.

The main contributions of the present paper are: (i) a novel control flow model that combines the precise ordering of 
selected types of instructions with an abstract representation of the remaining irrelevant ones, together with an opera-
tional semantics (a behavioural model), (ii) an adaptation of the original maximal model construction to the case with data 
(possibly from infinite domains) with minimal additional cost, (iii) a proof of the correctness of the technique by a (non-
trivial) re-establishment of our previous results, and (iv) three instantiations of the generic framework, most notably for a 
procedural language with the pointer datatype (PoP). A short version of the present paper appeared in [34].

Organization of the paper Section 2 provides an overview of our technique and illustrates some variability scenarios on an 
example. Sections 3, 4, and 5 define our program models, specification languages, and maximal models. In Section 6 we 
spell out our compositional verification principle. Throughout these sections we shall use the instantiation of the generic 
framework to the case with full data abstraction to illustrate the main notions. Sections 7 and 8 present two other instantia-
tions of our framework, namely for Boolean programs and for Pointer programs, respectively. Finally, in the last two sections 
we discuss related work and draw conclusions.

2. Overview of the approach

This section provides an overview of our framework by demonstrating its use on an example that mimics the method 
invocation style of real-life web applications. Although the technique we propose applies to procedural languages in general, 

1 From a wider perspective not further explored here, providing Hoare-style assertions and precise ordering of actions opens the ground for combining 
Hoare-style verification with temporal logic reasoning.



Download English Version:

https://daneshyari.com/en/article/433905

Download Persian Version:

https://daneshyari.com/article/433905

Daneshyari.com

https://daneshyari.com/en/article/433905
https://daneshyari.com/article/433905
https://daneshyari.com

