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In this article, we show that the Kamae–Xue complexity function for an infinite sequence 
classifies eventual periodicity completely. We prove that an infinite binary word x1x2 · · · is 
eventually periodic if and only if �(x1x2 · · · xn)/n3 has a positive limit, where �(x1x2 · · · xn)

is the sum of the squares of all the numbers of occurrences of finite words in x1x2 · · · xn , 
which was introduced by Kamae–Xue as a criterion of randomness in the sense that 
x1x2 · · · xn is more random if �(x1x2 · · · xn) is smaller. In fact, it is known that the lower 
limit of �(x1x2 · · · xn)/n2 is at least 3/2 for any sequence x1x2 · · · , while the limit exists 
as 3/2 almost surely for the (1/2, 1/2) product measure. For the other extreme, the upper 
limit of �(x1x2 · · · xn)/n3 is bounded by 1/3. There are sequences which are not eventually 
periodic but the lower limit of �(x1x2 · · · xn)/n3 is positive, while the limit does not exist.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In [1], a criterion of randomness for binary words is introduced. As stated in Definitions 1 and 3, let

�(x1x2 · · · xn) =
∑

ξ∈∪∞
k=1{0,1}k

|x1x2 · · · xn|2ξ ,

where

|x1x2 · · · xn|ξ := #{i : 1 ≤ i ≤ n − k + 1, xixi+1 · · · xi+k−1 = ξ}
is the number of occurrences of a finite word ξ in x1x2 · · · xn . Since the function f (x) = x2 is convex, the value ∑

ξ∈{0,1}k |x1x2 · · · xn|2ξ for any k = 1, 2, · · · is smaller if the values |x1x2 · · · xn|ξ for ξ ∈ {0, 1}k deviate less as a whole from 
the mean value (n − k + 1)/2k , that is, the sequence x1x2 · · · xn is more random. In fact, it is proved in [1] that

lim inf
n→∞

�(x1x2 · · · xn)

n2
≥ 3

2

holds for any x1x2 · · · ∈ {0, 1}∞ , while
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lim
n→∞

�(X1 X2 · · · Xn)

n2
= 3

2
holds with probability 1 if X1 X2 · · · Xn is the i.i.d. process with P (Xi = 0) = P (Xi = 1) = 1/2.

In this article, we study the opposite case that �(x1x2 · · · xn) increases in the order of n3 and prove that x1x2 · · · ∈ {0, 1}∞
is eventually periodic if and only if

lim
n→∞

�(x1x2 · · · xn)

n3
exists and > 0.

It is easy to see that if x = x1x2 · · · ∈ {0, 1}∞ contains few 1s, or precisely speaking, if x = 0k1 10k2 1 · · · with lim infn→∞ kn+1/

kn > 1, then we have

lim inf
n→∞

�(x1x2 · · · xn)

n3
> 0.

Since this x1x2 · · · is not eventually periodic, it follows from our result that limn→∞ �(x1x2 · · · xn)/n3 does not exist.
There are many characterizations of eventual periodicity. The most famous one might be the result due to Morse and 

Hedlund concerning the complexity. That is, x1x2 · · · is eventually periodic if and only if for some k ≥ 1 the number of 
words of size k appearing in x1x2 · · · is smaller than k + 1 [3]. Another characterization concerning the return time is 
obtained in [2]. Here, we add one more characterization which concerns both the complexity and the return time.

2. Definitions and lemmas

Definition 1. For x1x2 · · · xn ∈ {0, 1}n , ξ ∈ {0, 1}k with 1 ≤ k ≤ n and i = 0, 1, · · · , n − k, we denote

ξ ≺i x1x2 · · · xn if ξ = xi+1xi+2 · · · xi+k

and

ξ ≺ x1x2 · · · xn if ξ ≺i x1x2 · · · xn for some i = 0,1, · · · ,n − k.

We call ξ a factor or suffix of x1x2 · · · xn , respectively, if ξ ≺ x1x2 · · · xn or ξ ≺n−k x1x2 · · · xn . We also denote

|x1x2 · · · xn|ξ = #{i : 0 ≤ i ≤ n − k, ξ ≺i x1x2 · · · xn}
and |x1x2 · · · xn| = n.

Definition 2. For η = a1 · · ·ak ∈ {0, 1}k and � = 1, 2, · · · , we denote

η� = a1 · · ·ak︸ ︷︷ ︸
1

a1 · · ·ak︸ ︷︷ ︸
2

· · ·a1 · · ·ak︸ ︷︷ ︸
�

.

In the same way, we define η∞ ∈ {0, 1}∞ . We call η primitive if there is no ξ such that η = ξ� for some � ≥ 2.

Definition 3. (See [1].) Define �n : {0, 1}n → R by

�n(x1x2 · · · xn) =
∑

ξ∈{0,1}+
|x1x2 · · · xn|2ξ ,

where {0, 1}+ = ⋃∞
k=1{0, 1}k . We write �n = � as a function from {0, 1}+ to R.

Definition 4. For x1x2 · · · xn ∈ {0, 1}n , define

�(x1x2 · · · xn) = max{|η|2(� + 1)3 : η� ≺ x1x2 · · · xn}

Lemma 1. For any x1x2 · · · xn ∈ {0, 1}n, it holds that

�(x1x2 · · · xn) ≥ �(x1x2 · · · xn)

48
.

Proof. Let M = �(x1x2 · · · xn). Then, there exist positive integers k, � and η ∈ {0, 1}k with η� ≺ x1x2 · · · xn such that k2(� +
1)3 = M . Then, we have∑

ξ ; ξ≺η

|η�|2ξ ≥ �
∑

ξ ; ξ≺η

|η�|ξ ≥ k2�2

2
,
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