A characterization of eventual periodicity

Teturo Kamae ${ }^{\text {a }}$, Dong Han Kim ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Advanced Mathematics Institute, Osaka City University, Osaka, 558-8585, Japan
${ }^{\mathrm{b}}$ Department of Mathematics Education, Dongguk University - Seoul, Seoul 100-715, Republic of Korea

A R T I CLE IN F O

Article history:

Received 17 April 2014
Received in revised form 21 February 2015
Accepted 23 February 2015
Available online 2 March 2015
Communicated by G. Ausiello

Keywords:

Kamae-Xue complexity
Eventually periodic sequences
Low complexity sequences
Combinatorics on words

Abstract

In this article, we show that the Kamae-Xue complexity function for an infinite sequence classifies eventual periodicity completely. We prove that an infinite binary word $x_{1} x_{2} \cdots$ is eventually periodic if and only if $\Sigma\left(x_{1} x_{2} \cdots x_{n}\right) / n^{3}$ has a positive limit, where $\Sigma\left(x_{1} x_{2} \cdots x_{n}\right)$ is the sum of the squares of all the numbers of occurrences of finite words in $x_{1} x_{2} \cdots x_{n}$, which was introduced by Kamae-Xue as a criterion of randomness in the sense that $x_{1} x_{2} \cdots x_{n}$ is more random if $\Sigma\left(x_{1} x_{2} \cdots x_{n}\right)$ is smaller. In fact, it is known that the lower limit of $\Sigma\left(x_{1} x_{2} \cdots x_{n}\right) / n^{2}$ is at least $3 / 2$ for any sequence $x_{1} x_{2} \cdots$, while the limit exists as $3 / 2$ almost surely for the $(1 / 2,1 / 2)$ product measure. For the other extreme, the upper limit of $\Sigma\left(x_{1} x_{2} \cdots x_{n}\right) / n^{3}$ is bounded by $1 / 3$. There are sequences which are not eventually periodic but the lower limit of $\Sigma\left(x_{1} x_{2} \cdots x_{n}\right) / n^{3}$ is positive, while the limit does not exist. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

In [1], a criterion of randomness for binary words is introduced. As stated in Definitions 1 and 3, let

$$
\Sigma\left(x_{1} x_{2} \cdots x_{n}\right)=\sum_{\xi \in \cup_{k=1}^{\infty}\{0,1\}^{k}}\left|x_{1} x_{2} \cdots x_{n}\right|_{\xi}^{2}
$$

where

$$
\left|x_{1} x_{2} \cdots x_{n}\right| \xi:=\#\left\{i: 1 \leq i \leq n-k+1, x_{i} x_{i+1} \cdots x_{i+k-1}=\xi\right\}
$$

is the number of occurrences of a finite word ξ in $x_{1} x_{2} \cdots x_{n}$. Since the function $f(x)=x^{2}$ is convex, the value $\sum_{\xi \in\{0,1\}^{k}}\left|x_{1} x_{2} \cdots x_{n}\right|_{\xi}^{2}$ for any $k=1,2, \cdots$ is smaller if the values $\left|x_{1} x_{2} \cdots x_{n}\right|_{\xi}$ for $\xi \in\{0,1\}^{k}$ deviate less as a whole from the mean value $(n-k+1) / 2^{k}$, that is, the sequence $x_{1} x_{2} \cdots x_{n}$ is more random. In fact, it is proved in [1] that

$$
\liminf _{n \rightarrow \infty} \frac{\Sigma\left(x_{1} x_{2} \cdots x_{n}\right)}{n^{2}} \geq \frac{3}{2}
$$

holds for any $x_{1} x_{2} \cdots \in\{0,1\}^{\infty}$, while

[^0]http://dx.doi.org/10.1016/j.tcs.2015.02.039
0304-3975/© 2015 Elsevier B.V. All rights reserved.
$$
\lim _{n \rightarrow \infty} \frac{\Sigma\left(X_{1} X_{2} \cdots X_{n}\right)}{n^{2}}=\frac{3}{2}
$$
holds with probability 1 if $X_{1} X_{2} \cdots X_{n}$ is the i.i.d. process with $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=1 / 2$.
In this article, we study the opposite case that $\Sigma\left(x_{1} x_{2} \cdots x_{n}\right)$ increases in the order of n^{3} and prove that $x_{1} x_{2} \cdots \in\{0,1\}^{\infty}$ is eventually periodic if and only if
$$
\lim _{n \rightarrow \infty} \frac{\Sigma\left(x_{1} x_{2} \cdots x_{n}\right)}{n^{3}} \text { exists and }>0
$$

It is easy to see that if $x=x_{1} x_{2} \cdots \in\{0,1\}^{\infty}$ contains few 1 s , or precisely speaking, if $x=0^{k_{1}} 10^{k_{2}} 1 \cdots$ with $\liminf _{n \rightarrow \infty} k_{n+1} /$ $k_{n}>1$, then we have

$$
\liminf _{n \rightarrow \infty} \frac{\Sigma\left(x_{1} x_{2} \cdots x_{n}\right)}{n^{3}}>0
$$

Since this $x_{1} x_{2} \cdots$ is not eventually periodic, it follows from our result that $\lim _{n \rightarrow \infty} \Sigma\left(x_{1} x_{2} \cdots x_{n}\right) / n^{3}$ does not exist.
There are many characterizations of eventual periodicity. The most famous one might be the result due to Morse and Hedlund concerning the complexity. That is, $x_{1} x_{2} \cdots$ is eventually periodic if and only if for some $k \geq 1$ the number of words of size k appearing in $x_{1} x_{2} \cdots$ is smaller than $k+1$ [3]. Another characterization concerning the return time is obtained in [2]. Here, we add one more characterization which concerns both the complexity and the return time.

2. Definitions and lemmas

Definition 1. For $x_{1} x_{2} \cdots x_{n} \in\{0,1\}^{n}, \xi \in\{0,1\}^{k}$ with $1 \leq k \leq n$ and $i=0,1, \cdots, n-k$, we denote

$$
\xi \prec_{i} x_{1} x_{2} \cdots x_{n} \text { if } \xi=x_{i+1} x_{i+2} \cdots x_{i+k}
$$

and

$$
\xi \prec x_{1} x_{2} \cdots x_{n} \text { if } \xi \prec_{i} x_{1} x_{2} \cdots x_{n} \text { for some } i=0,1, \cdots, n-k .
$$

We call ξ a factor or suffix of $x_{1} x_{2} \cdots x_{n}$, respectively, if $\xi \prec x_{1} x_{2} \cdots x_{n}$ or $\xi \prec_{n-k} x_{1} x_{2} \cdots x_{n}$. We also denote

$$
\left|x_{1} x_{2} \cdots x_{n}\right| \xi=\#\left\{i: 0 \leq i \leq n-k, \xi \prec_{i} x_{1} x_{2} \cdots x_{n}\right\}
$$

and $\left|x_{1} x_{2} \cdots x_{n}\right|=n$.
Definition 2. For $\eta=a_{1} \cdots a_{k} \in\{0,1\}^{k}$ and $\ell=1,2, \cdots$, we denote

$$
\eta^{\ell}=\underbrace{a_{1} \cdots a_{k}}_{1} \underbrace{a_{1} \cdots a_{k}}_{2} \cdots \underbrace{a_{1} \cdots a_{k}}_{\ell} .
$$

In the same way, we define $\eta^{\infty} \in\{0,1\}^{\infty}$. We call η primitive if there is no ξ such that $\eta=\xi^{\ell}$ for some $\ell \geq 2$.
Definition 3. (See [1].) Define $\Sigma^{n}:\{0,1\}^{n} \rightarrow \mathbb{R}$ by

$$
\Sigma^{n}\left(x_{1} x_{2} \cdots x_{n}\right)=\sum_{\xi \in\{0,1\}^{+}}\left|x_{1} x_{2} \cdots x_{n}\right|_{\xi}^{2}
$$

where $\{0,1\}^{+}=\bigcup_{k=1}^{\infty}\{0,1\}^{k}$. We write $\Sigma^{n}=\Sigma$ as a function from $\{0,1\}^{+}$to \mathbb{R}.
Definition 4. For $x_{1} x_{2} \cdots x_{n} \in\{0,1\}^{n}$, define

$$
\Lambda\left(x_{1} x_{2} \cdots x_{n}\right)=\max \left\{|\eta|^{2}(\ell+1)^{3}: \eta^{\ell} \prec x_{1} x_{2} \cdots x_{n}\right\}
$$

Lemma 1. For any $x_{1} x_{2} \cdots x_{n} \in\{0,1\}^{n}$, it holds that

$$
\Sigma\left(x_{1} x_{2} \cdots x_{n}\right) \geq \frac{\Lambda\left(x_{1} x_{2} \cdots x_{n}\right)}{48}
$$

Proof. Let $M=\Lambda\left(x_{1} x_{2} \cdots x_{n}\right)$. Then, there exist positive integers k, ℓ and $\eta \in\{0,1\}^{k}$ with $\eta^{\ell} \prec x_{1} x_{2} \cdots x_{n}$ such that $k^{2}(\ell+$ $1)^{3}=M$. Then, we have

$$
\sum_{\xi ; \xi<\eta}\left|\eta^{\ell}\right|_{\xi}^{2} \geq \ell \sum_{\xi ; \xi<\eta}\left|\eta^{\ell}\right|_{\xi} \geq \frac{k^{2} \ell^{2}}{2}
$$

https://daneshyari.com/en/article/433908

Download Persian Version:

https://daneshyari.com/article/433908

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kamae@apost.plala.or.jp (T. Kamae), kim2010@dongguk.edu (D.H. Kim).
 URL: http://www14.plala.or.jp/kamae (T. Kamae).

