Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A characterization of eventual periodicity

Teturo Kamae^a, Dong Han Kim^{b,*}

^a Advanced Mathematics Institute, Osaka City University, Osaka, 558-8585, Japan

^b Department of Mathematics Education, Dongguk University – Seoul, Seoul 100-715, Republic of Korea

ARTICLE INFO

Article history: Received 17 April 2014 Received in revised form 21 February 2015 Accepted 23 February 2015 Available online 2 March 2015 Communicated by G. Ausiello

Keywords: Kamae–Xue complexity Eventually periodic sequences Low complexity sequences Combinatorics on words

ABSTRACT

In this article, we show that the Kamae–Xue complexity function for an infinite sequence classifies eventual periodicity completely. We prove that an infinite binary word $x_1x_2\cdots$ is eventually periodic if and only if $\Sigma(x_1x_2\cdots x_n)/n^3$ has a positive limit, where $\Sigma(x_1x_2\cdots x_n)$ is the sum of the squares of all the numbers of occurrences of finite words in $x_1x_2\cdots x_n$, which was introduced by Kamae–Xue as a criterion of randomness in the sense that $x_1x_2\cdots x_n$ is more random if $\Sigma(x_1x_2\cdots x_n)$ is smaller. In fact, it is known that the lower limit of $\Sigma(x_1x_2\cdots x_n)/n^2$ is at least 3/2 for any sequence $x_1x_2\cdots$, while the limit exists as 3/2 almost surely for the (1/2, 1/2) product measure. For the other extreme, the upper limit of $\Sigma(x_1x_2\cdots x_n)/n^3$ is bounded by 1/3. There are sequences which are not eventually periodic but the lower limit of $\Sigma(x_1x_2\cdots x_n)/n^3$ is positive, while the limit does not exist. (0.2015 Elsevier B.V. All rights reserved.)

1. Introduction

In [1], a criterion of randomness for binary words is introduced. As stated in Definitions 1 and 3, let

$$\Sigma(x_1x_2\cdots x_n) = \sum_{\xi \in \bigcup_{k=1}^{\infty} [0,1]^k} |x_1x_2\cdots x_n|_{\xi}^2,$$

where

 $|x_1x_2\cdots x_n|_{\xi} := \#\{i: 1 \le i \le n-k+1, x_ix_{i+1}\cdots x_{i+k-1} = \xi\}$

is the number of occurrences of a finite word ξ in $x_1x_2\cdots x_n$. Since the function $f(x) = x^2$ is convex, the value $\sum_{\xi \in \{0,1\}^k} |x_1x_2\cdots x_n|_{\xi}^2$ for any $k = 1, 2, \cdots$ is smaller if the values $|x_1x_2\cdots x_n|_{\xi}$ for $\xi \in \{0,1\}^k$ deviate less as a whole from the mean value $(n-k+1)/2^k$, that is, the sequence $x_1x_2\cdots x_n$ is more random. In fact, it is proved in [1] that

$$\liminf_{n\to\infty}\frac{\Sigma(x_1x_2\cdots x_n)}{n^2}\geq \frac{3}{2}$$

holds for any $x_1x_2 \dots \in \{0, 1\}^\infty$, while

* Corresponding author. E-mail addresses: kamae@apost.plala.or.jp (T. Kamae), kim2010@dongguk.edu (D.H. Kim). URL: http://www14.plala.or.jp/kamae (T. Kamae).

http://dx.doi.org/10.1016/j.tcs.2015.02.039 0304-3975/© 2015 Elsevier B.V. All rights reserved.

$$\lim_{n\to\infty}\frac{\Sigma(X_1X_2\cdots X_n)}{n^2}=\frac{3}{2}$$

holds with probability 1 if $X_1 X_2 \cdots X_n$ is the i.i.d. process with $P(X_i = 0) = P(X_i = 1) = 1/2$.

In this article, we study the opposite case that $\Sigma(x_1x_2\cdots x_n)$ increases in the order of n^3 and prove that $x_1x_2\cdots \in \{0, 1\}^\infty$ is eventually periodic if and only if

$$\lim_{n\to\infty}\frac{\Sigma(x_1x_2\cdots x_n)}{n^3} \text{ exists and } > 0.$$

It is easy to see that if $x = x_1 x_2 \dots \in \{0, 1\}^\infty$ contains few 1s, or precisely speaking, if $x = 0^{k_1} 10^{k_2} 1 \dots$ with $\liminf_{n \to \infty} k_{n+1}/k_n > 1$, then we have

$$\liminf_{n\to\infty}\frac{\Sigma(x_1x_2\cdots x_n)}{n^3}>0.$$

Since this $x_1x_2\cdots$ is not eventually periodic, it follows from our result that $\lim_{n\to\infty} \Sigma(x_1x_2\cdots x_n)/n^3$ does not exist.

There are many characterizations of eventual periodicity. The most famous one might be the result due to Morse and Hedlund concerning the complexity. That is, $x_1x_2\cdots$ is eventually periodic if and only if for some $k \ge 1$ the number of words of size k appearing in $x_1x_2\cdots$ is smaller than k + 1 [3]. Another characterization concerning the return time is obtained in [2]. Here, we add one more characterization which concerns both the complexity and the return time.

2. Definitions and lemmas

Definition 1. For $x_1 x_2 \cdots x_n \in \{0, 1\}^n$, $\xi \in \{0, 1\}^k$ with $1 \le k \le n$ and $i = 0, 1, \dots, n - k$, we denote

$$\xi \prec_i x_1 x_2 \cdots x_n$$
 if $\xi = x_{i+1} x_{i+2} \cdots x_{i+k}$

and

 $\xi \prec x_1 x_2 \cdots x_n$ if $\xi \prec_i x_1 x_2 \cdots x_n$ for some $i = 0, 1, \cdots, n-k$.

We call ξ a *factor* or *suffix* of $x_1x_2 \cdots x_n$, respectively, if $\xi \prec x_1x_2 \cdots x_n$ or $\xi \prec_{n-k} x_1x_2 \cdots x_n$. We also denote

$$|x_1x_2\cdots x_n|_{\xi} = \#\{i: 0 \le i \le n-k, \ \xi \prec_i x_1x_2\cdots x_n\}$$

and $|x_1 x_2 \cdots x_n| = n$.

Definition 2. For $\eta = a_1 \cdots a_k \in \{0, 1\}^k$ and $\ell = 1, 2, \cdots$, we denote

$$\eta^{\ell} = \underbrace{a_1 \cdots a_k}_{1} \underbrace{a_1 \cdots a_k}_{2} \cdots \underbrace{a_1 \cdots a_k}_{\ell}.$$

In the same way, we define $\eta^{\infty} \in \{0, 1\}^{\infty}$. We call η primitive if there is no ξ such that $\eta = \xi^{\ell}$ for some $\ell \ge 2$.

Definition 3. (See [1].) Define $\Sigma^n : \{0, 1\}^n \to \mathbb{R}$ by

$$\Sigma^{n}(x_{1}x_{2}\cdots x_{n}) = \sum_{\xi \in \{0,1\}^{+}} |x_{1}x_{2}\cdots x_{n}|_{\xi}^{2},$$

where $\{0, 1\}^+ = \bigcup_{k=1}^{\infty} \{0, 1\}^k$. We write $\Sigma^n = \Sigma$ as a function from $\{0, 1\}^+$ to \mathbb{R} .

Definition 4. For $x_1x_2 \cdots x_n \in \{0, 1\}^n$, define

$$\Lambda(x_1x_2\cdots x_n) = \max\{|\eta|^2(\ell+1)^3: \eta^\ell \prec x_1x_2\cdots x_n\}$$

Lemma 1. For any $x_1x_2 \cdots x_n \in \{0, 1\}^n$, it holds that

$$\Sigma(x_1x_2\cdots x_n)\geq \frac{\Lambda(x_1x_2\cdots x_n)}{48}.$$

Proof. Let $M = \Lambda(x_1x_2 \cdots x_n)$. Then, there exist positive integers k, ℓ and $\eta \in \{0, 1\}^k$ with $\eta^\ell \prec x_1x_2 \cdots x_n$ such that $k^2(\ell + 1)^3 = M$. Then, we have

$$\sum_{\xi; \xi \prec \eta} |\eta^{\ell}|_{\xi}^2 \geq \ell \sum_{\xi; \xi \prec \eta} |\eta^{\ell}|_{\xi} \geq \frac{k^2 \ell^2}{2},$$

Download English Version:

https://daneshyari.com/en/article/433908

Download Persian Version:

https://daneshyari.com/article/433908

Daneshyari.com