Science of Computer Programming 87 (2014) 62-94

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming :

www.elsevier.com/locate/scico i

Improving workflow modularity using a concern-specific layer @CmssMark
on top of Unify

Niels Joncheere *!, Sebastian Giinther -2, Ragnhild Van Der Straeten,
Viviane Jonckers

Vrije Universiteit Brussel, Software Languages Lab, Pleinlaan 2, 1050 Brussels, Belgium

HIGHLIGHTS

o We present the Unify framework for uniform modularization of workflow concerns.
o We present and exemplify the framework’s base language and connector mechanism.
e We present two concern-specific languages (CSLs) built on top of the framework.

e We propose a methodology for building CSLs on top of the framework.

e We validate the expressiveness, performance and scalability of our approach.

ARTICLE INFO ABSTRACT
Article history: Workflows are a popular means of automating processes in many domains, ranging from
Received 21 July 2012 high-level business process modeling to lower-level web service orchestration. However,

Received in revised form 4 November 2013
Accepted 5 November 2013
Available online 12 November 2013

state-of-the-art workflow languages offer a limited set of modularization mechanisms. This
results in monolithic workflow specifications, in which different concerns are scattered
across the workflow and tangled with one another. This hinders the design, evolution, and
reusability of workflows expressed in these languages. We address this problem through

Ic(?,;v::rrgipeciﬁc languages the Unify framework. This framework enables uniform modularization of workflows by
Domain-specific languages supporting the specification of all workflow concerns - including crosscutting ones - in
Modularization isolation of each other. These independently specified workflow concerns are connected
Separation of concerns to each other using workflow-specific connectors. In order to further facilitate the
Workflow languages development of workflows, we enable the definition of concern-specific languages (CSLs)

on top of the Unify framework. A CSL facilitates the expression of a family of workflow
concerns by offering abstractions that map well to the concerns’ domain. Thus, domain
experts can add concerns to a workflow using concern-specific language constructs. We
exemplify the specification of a workflow in Unify, and show the definition and application
of two concern-specific languages built on top of Unify.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Workflow management systems [1] have become a popular means of automating processes in many domains (e.g., e-
commerce [2], healthcare [3], bioinformatics [4]). A workflow is defined to be the automation of a business process, in whole

* Corresponding author.
E-mail addresses: njonchee@soft.vub.ac.be (N. Joncheere), sgunther@soft.vub.ac.be (S. Giinther), rvdstrae@soft.vub.ac.be (R. Van Der Straeten),
vejoncke@soft.vub.ac.be (V. Jonckers).
! Funded by Innoviris, the Brussels Institute for Research and Innovation, through the VariBru project.
2 Present address: Senacor Technologies AG, LitfaBplatz 2, 10178 Berlin, Germany.

0167-6423/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.003


http://dx.doi.org/10.1016/j.scico.2013.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:njonchee@soft.vub.ac.be
mailto:sgunther@soft.vub.ac.be
mailto:rvdstrae@soft.vub.ac.be
mailto:vejoncke@soft.vub.ac.be
http://dx.doi.org/10.1016/j.scico.2013.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.003&domain=pdf

N. Joncheere et al. / Science of Computer Programming 87 (2014) 62-94 63

or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of
procedural rules [5]. A workflow is created by dividing a process into different activities, and by specifying the ordering in
which these activities need to be performed. This ordering is called the control flow perspective [6], as it describes how con-
trol flows between the activities. Typically, control can be split into several branches and joined at a later time. This allows
specifying parallelism and choice. On top of the control flow perspective, the data perspective [7] describes the data that is
used and generated by the activities. Common workflow languages include WS-BPEL [8], BPMN [9], and YAWL [10]. Because
workflows are well suited to representing processes, e.g., in a visual form, they are often used for communicating with
domain experts. However, domain experts typically do not develop workflows by themselves, as specific technical knowledge
is required for augmenting high-level process descriptions with low-level implementation details. Workflow developers fulfill
this latter role and thus perform most of the workflow development.

Separation of concerns [11] is a general software engineering principle that refers to the ability to identify, encapsulate,
and manipulate only those parts of software that are relevant to a particular concept, goal, or purpose. These parts, called
concerns, are the primary motivation for organizing and decomposing software into manageable and comprehensible mod-
ules [12]. Realistic workflows consist of several concerns, which are connected in order to achieve the desired behavior.
For example, the e-commerce workflow used throughout this paper consists of the order handling, payment, shipping, and
reporting concerns, among others. However, if all of a workflow’s concerns need to be specified in a single, monolithic
workflow specification, it will be hard to add, maintain, remove or reuse these concerns. Although most workflow lan-
guages allow decomposing workflows into sub-workflows, this mechanism is typically aimed at grouping activities instead
of facilitating the independent evolution and reuse of concerns. Moreover, the sub-workflow mechanism only provides for
procedural decomposition of a workflow, which suffers from the “tyranny of the dominant decomposition” as identified
by Tarr et al. [13]: concerns that do not align with the dominant, procedural decomposition end up scattered across the
workflow and tangled with one another, and are thus called crosscutting concerns [14]. These problems have been discussed
in related work by ourselves [15] and others [16-18], where they are mainly tackled using aspect-oriented programming for
workflows. Nevertheless, the problems are not yet fully addressed by the proposed solutions.

The goal of our current solution is to facilitate independent evolution and reuse of all workflow concerns, i.e., not merely
crosscutting concerns. This can be accomplished by improving the modularization mechanisms offered by the workflow
language. We propose an approach called Unify which provides a set of workflow-specific modularization mechanisms
that can be readily employed by a range of existing workflow languages. Unify facilitates specifying workflow concerns
as separate modules. These modules are then composed using versatile connectors, which specify how the concerns are
connected. The main contributions of Unify are the following [19]:

1. Existing research on modularization of workflow concerns is aimed at only modularizing crosscutting concerns [15,17,
18], or at only modularizing one particular kind of concern, such as monitoring [20]. Unify, on the other hand, aims to
provide a uniform approach for modularizing all workflow concerns.

2. Existing aspect-oriented approaches for workflows are fairly straightforward applications of general aspect-oriented
principles: they only support the basic concern connection patterns (before, after, and around; cf. Section 2) that were
identified in general aspect-oriented research and which are essentially sequential. Thus, they do not sufficiently con-
sider the prevalence of other control flow patterns such as parallelism and choice in the context of workflows. Unify
improves on this by allowing workflow concerns to connect to each other in more workflow-specific ways, i.e., the
connector mechanism supports a number of dedicated concern connection patterns that recognize the specific charac-
teristics of the workflow paradigm, and which are not supported by other approaches.

3. Unify is designed to be applicable to a range of concrete workflow languages. This is accomplished by defining its
connector mechanism in terms of a general, extensible base language meta-model.

4. Unify defines a clear semantics for its modularization mechanism, which facilitates the application of existing workflow
verification techniques. This semantics has been previously published elsewhere [21,19], so we will not consider this
topic further in the current paper.

5. The Unify implementation can either be used as a separate workflow engine, or as a preprocessor that is compatible
with existing tool chains.

In this paper, we extend the contributions of the Unify framework further by considering the perspective of domain
experts. While the above contributions mainly benefit workflow developers, we wish to involve the domain experts in the
development of their workflows. In order to achieve this, we add notations and abstractions on top of Unify that define
concern-specific languages (CSLs) [22,23], which are a specific kind of domain-specific languages (DSLs) [24-26]. DSLs hide
implementation details in order to facilitate their use by domain experts. A CSL is a DSL of which the domain is the
specification of a specific family of concerns. CSLs offer, as their name implies, dedicated constructs for defining families
of concerns. Thus, the CSLs defined on top of Unify hide much of the complexity of the underlying base language and
connector mechanism.

A description of the Unify framework has been published previously [19]. The current paper extends the previously pub-
lished paper by describing our data perspective (cf. Section 4.1.2), describing the latest version of our connector mechanism
(which introduces support for fragment joinpoints as well as the notion of internal connectors; cf. Section 4.2), and describing
how concern-specific languages can be built on top of Unify (cf. Section 5). We also provide a validation of our approach



Download English Version:

https://daneshyari.com/en/article/433919

Download Persian Version:

https://daneshyari.com/article/433919

Daneshyari.com


https://daneshyari.com/en/article/433919
https://daneshyari.com/article/433919
https://daneshyari.com

