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We consider the online scheduling problem on m parallel machines with eligibility 
constraints. The jobs arrive over time and have equal processing times. The objective is 
to minimize the makespan. We develop optimal deterministic online algorithms for the 
nested processing set case and the inclusive processing set case with an arbitrary number 
of machines, as well as the tree-like processing set case with three machines.
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1. Introduction

In this paper we consider the problem of scheduling n jobs on m parallel machines with eligibility constraints. Let 
J = { J1, J2, . . . , Jn} be the set of jobs and M = {M1, M2, . . . , Mm} be the set of machines. Every job J j is associated with 
a release time r j , a processing time p j , and a processing set M j ⊆ M , which mean the job can only be processed at or 
after time r j and on the machines in M j , and its processing takes p j time units. We study this scheduling problem in the 
online setting. Then, the information of any job is available only after its being released, even about its existence. But when 
a job appears, we have the option of scheduling it immediately or postponing its scheduling till some later time. Our goal 
is to find a schedule that minimizes the makespan Cmax, i.e., the maximum completion time of the jobs. Using the 3-field 
notation of Graham et al. [3], we denote the problem as P |M j, r j, online|Cmax. Specially, we concern ourselves with the 
problem with equal processing times, i.e., P |M j, r j, p j = p, online|Cmax.

We consider three types of eligibility constraints in this paper, namely the nested processing sets, the inclusive processing 
sets, and the tree-like processing sets. In the nested processing set case, for any two jobs J i and J j , it holds that either 
Mi ⊆ M j or Mi ⊇ M j or Mi ∩ M j = ∅. In the inclusive processing set case, for any J i and J j , it holds that either 
Mi ⊆M j or Mi ⊇M j . Clearly, the inclusive processing set is a special case of the nested processing set. In the literature, 
the inclusive processing set is also called the GoS processing set. In the tree-like processing set case, we can construct a 
rooted tree such that each node represents a machine and the processing set of a job consists of the nodes/machines on the 
unique path from some node to the root of the tree. Fig. 1 shows an example of the tree-like processing sets. Note that each 
job can be associated with a node of the tree to indicate the processing set. In the example, J1, J2, J3, J4 are associated with 
the machine nodes M2, M2, M3, M6, respectively. Then, M1 = M2 = {M1, M2}, M3 = {M1, M2, M3}, M4 = {M1, M5, M6}. 
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Fig. 1. Tree-like processing set.

We use M j(nested), M j(inclusive), M j(tree) to specify these three eligibility constraints. The inclusive processing set is 
also the special case of the tree-like processing set.

Scheduling problems with eligibility constraints occur quite often in practice. Glass and Mills [2] gave an application 
of the nested processing set case for the steam-treatment process in a food processing plant. Ou et al. [7] described an 
application of the inclusive processing set case for scheduling cranes with different weight capacity limits.

To evaluate the performance of an algorithm, we use the worst-case performance ratio and the competitive ratio for 
the offline problem and online problem, respectively. Let σ ∗ denote the offline optimal schedule and σ denote the sched-
ule generated by the algorithm in context. Let Cmax(σ

∗) and Cmax(σ ) denote the makespan of σ ∗ and σ , respectively. If 
Cmax(σ ) ≤ ρCmax(σ

∗), this algorithm is said to be a ρ-approximation algorithm for the offline problem, and a ρ-competitive 
algorithm for the online problem.

Lenstra et al. [6] provided a 2-approximation algorithm for the offline problem P |M j |Cmax in which all jobs are available 
at time zero. After a long time, Shchepin and Vakhania [8] gave a slightly improved (2 − 1

m )-approximation algorithm for it. 
Gabriella et al. [1] considered the problem P |M j(nested)|Cmax and obtained a PTAS. Leah and Asaf [4] presented PTAS for 
both P |M j(nested)|Cmax and P |M j(tree)|Cmax. Since the inclusive processing set is a special case of the nested processing 
set and the tree-like processing set, P |M j(inclusive)|Cmax has a PTAS.

Shmoys et al. [9] showed that if there is a ρ-approximation algorithm for some scheduling problem in which 
all jobs are available at time zero, then there exists a 2ρ-competitive algorithm for the corresponding problem in 
which the jobs are released online over time. Therefore, P |M j, r j, online|Cmax has a (4 − 2

m )-competitive algorithm, and 
P |M j(inclusive), r j, online|Cmax, P |M j(nested), r j, online|Cmax and P |M j(tree), r j, online|Cmax have (2 + ε)-competitive al-
gorithms, where ε is a sufficiently small positive number. Lee et al. [5] considered the problems with equal processing 
times, and gave a 1.618-competitive algorithm for P 2|M j(nested), r j, p j = p, online|Cmax and a 

√
2-competitive algorithm 

for P 2|M j(inclusive), r j, p j = p, online|Cmax.
In this paper, we consider the online problem with equal processing times, i.e., P |M j, r j, p j = p, online|Cmax. In Sec-

tions 2 and 3, we present optimal algorithms for the nested processing set case and the inclusive processing set case with 
an arbitrary number of machines, which generalize the algorithms in Lee et al. [5]. In Section 4, we design an optimal 
algorithm for the tree-like processing set case with three machines.

2. Nested processing sets

In this section, we consider the nested processing set problem P |M j(nested), r j, p j = p, online|Cmax. For its special case 
with two machines, Lee et al. [5] have proposed an optimal algorithm with a competitive ratio of 1 + α, where α =

√
5−1
2 . 

In their algorithm, the release times of the jobs with M j = {M1, M2} are uniformly delayed by αp time units, and the 
jobs with less flexibility, i.e., M j = {M1} or {M2}, have priority for processing whenever a machine becomes idle. When 
the number of machines is arbitrary, we also let the jobs with the least flexibility, i.e., the smallest |M j |, have the highest 
priority. However, we do not modify the release times of some specified jobs by a fixed amount but schedule all jobs at the 
specified times αp + kp, where k = 0, 1, 2, . . . . So, our schedule has a more regular structure. Our algorithm is called H1, 
where J̃ t denotes the set of unscheduled available jobs at time t .

We now prove that H1 is a (1 + α)-competitive algorithm. Let I be the original instance solved by Algorithm H1. We 
need to consider the auxiliary instance Î obtained from I by delaying the release time of each job to the nearest time 
in {αp + kp | k = 0, 1, 2, . . .}. Let r̂ j be the release time of J j in Î . Then, r̂ j = min{αp + kp | αp + kp ≥ r j}. Noticing that 
r̂ j − r j < p holds for any j, we have the following lemma.

Lemma 1. Cmax(σ
∗) > Cmax(σ̂

∗) − p, where σ ∗ and σ̂ ∗ denote the offline optimal schedules of I and Î , respectively.

In addition, as all jobs are released at the specified times αp + kp (k = 0, 1, 2, . . .) in Î , we can also get Lemma 2.

Lemma 2. There must be an offline optimal schedule for Î such that all jobs are scheduled at times αp + kp (k = 0, 1, 2, . . .).
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