Avoiding 2-binomial squares and cubes

Michaël Rao ${ }^{\text {a }}$, Michel Rigo ${ }^{\text {b,* }}$, Pavel Salimov ${ }^{\text {b,c, }}{ }^{1}$
${ }^{\text {a }}$ CNRS, LIP, ENS Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
${ }^{\mathrm{b}}$ Dept of Math., University of Liège, Grande traverse 12 (B37), B-4000 Liège, Belgium
${ }^{\text {c }}$ Sobolev Institute of Math., 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia

ARTICLE INFO

Article history:

Received 10 September 2014
Received in revised form 15 January 2015
Accepted 17 January 2015
Available online 21 January 2015
Communicated by M. Crochemore

Keywords:

Combinatorics on words
Binomial coefficient
Binomial equivalence
Avoidance
Squarefree
Cubefree

Abstract

Two finite words u, v are 2-binomially equivalent if, for all words x of length at most 2 , the number of occurrences of x as a (scattered) subword of u is equal to the number of occurrences of x in v. This notion is a refinement of the usual abelian equivalence. A 2-binomial square is a word $u v$ where u and v are 2-binomially equivalent. In this paper, considering pure morphic words, we prove that 2 -binomial squares (resp. cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet. The sizes of the alphabets are optimal.

(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

A square (resp. cube) is a non-empty word of the form $x x$ (resp. $x x x$). Since the work of Thue, it is well-known that there exists an infinite squarefree word over a ternary alphabet, and an infinite cubefree word over a binary alphabet [13,14]. A main direction of research in combinatorics on words is about the avoidance of a pattern, and the size of the alphabet is a parameter of the problem.

A possible and widely studied generalization of squarefreeness is to consider an abelian framework. A non-empty word is an abelian square (resp. abelian cube) if it is of the form $x y$ (resp. $x y z$) where y is a permutation of x (resp. y and z are permutations of x). Erdös raised the question whether abelian squares can be avoided by an infinite word over an alphabet of size 4 [3]. Keränen answered positively to this question, with a pure morphic word [9]. Moreover Dekking has previously obtained an infinite word over a 3-letter alphabet that avoids abelian cubes, and an infinite binary word that avoids abelian 4 -powers [2]. (Note that in all these results, the size of the alphabet is optimal.)

In this paper, we are dealing with another generalization of squarefreeness and cubefreeness. We consider the 2-binomial equivalence which is a refinement of the abelian equivalence, i.e., if two words x and y are 2-binomially equivalent, then x is a permutation of y (but in general, the converse does not hold, see Example 1 below). This equivalence relation is defined thanks to the binomial coefficient $\binom{u}{v}$ of two words u and v which is the number of times v occurs as a subsequence of u

[^0](meaning as a "scattered" subword). For more on these binomial coefficients, see for instance [10, Chap. 6]. Based on this classical notion, the m-binomial equivalence of two words has been recently introduced [12].

Definition 1. Let $m \in \mathbb{N} \cup\{+\infty\}$ and u, v be two words over the alphabet A. We let $A^{\leq m}$ denote the set of words of length at most m over A. We say that u and v are m-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x}, \quad \forall x \in A^{\leq m} .
$$

We simply write $u \sim_{m} v$ if u and v are m-binomially equivalent. The word u is obtained as a permutation of the letters in v if and only if $u \sim_{1} v$. In that case, we say that u and v are abelian equivalent and we write instead $u \sim_{a b} v$. Note that if $u \sim_{k+1} v$, then $u \sim_{k} v$, for all $k \geq 1$.

Example 1. The four words $0101110,0110101,1001101$ and 1010011 are 2-binomially equivalent. Let u be any of these four words. We have

$$
\binom{u}{0}=3, \quad\binom{u}{1}=4, \quad\binom{u}{00}=3, \quad\binom{u}{01}=7, \quad\binom{u}{10}=5, \quad\binom{u}{11}=6 .
$$

For instance, the word 0001111 is abelian equivalent to 0101110 but these two words are not 2 -binomially equivalent. Let a be a letter. It is clear that $\binom{u}{a a}$ and $\binom{u}{a}$ carry the same information, i.e., $\binom{u}{a a}=\binom{|u|_{a}}{2}$ where $|u|_{a}$ is the number of occurrences of a in u.

A 2-binomial square (resp. 2-binomial cube) is a non-empty word of the form $x y$ where $x \sim_{2} y$ (resp. $x \sim_{2} y \sim_{2} z$). For instance, the prefix of length 12 of the Thue-Morse word: 011010011001 is a 2 -binomial cube. Squares are avoidable over a 3 -letter alphabet and abelian squares are avoidable over a 4 -letter alphabet. Since 2 -binomial equivalence lies between abelian equivalence and equality, the question is to determine whether or not 2-binomial squares are avoidable over a 3-letter alphabet. We answer positively to this question in Section 2. The fixed point of the morphism $g: 0 \mapsto 012$, $1 \mapsto 02,2 \mapsto 1$ avoids 2 -binomial squares.

In a similar way, cubes are avoidable over a 2-letter alphabet and abelian squares are avoidable over a 3-letter alphabet. The question is to determine whether or not 2 -binomial cubes are avoidable over a 2 -letter alphabet. We also answer positively to this question in Section 3. The fixed point of the morphism $h: 0 \mapsto 001,1 \mapsto 011$ avoids 2-binomial cubes.

Remark 1. The m-binomial equivalence is not the only way to refine the abelian equivalence. Recently, a notion of m-abelian equivalence has been introduced [8]. To define this equivalence, one counts the number $|u|_{x}$ of occurrences in u of all factors x of length up to m (it is meant factors made of consecutive letters). That is, u and v are m-abelian equivalent if $|u|_{x}=|v|_{x}$ for all $x \in A^{\leq m}$. In that context, the results on avoidance are quite different. Over a 3-letter alphabet 2 -abelian squares are unavoidable: the longest ternary word which is 2 -abelian squarefree has length 537 [6], and pure morphic words cannot avoid k-abelian-squares for every k [7]. On the other hand, it has been shown that there exists a 3 -abelian squarefree morphic word over a 3-letter alphabet [11]. Moreover 2-abelian-cubes can be avoided over a binary alphabet by a morphic word [11].

The number of occurrences of a letter a in a word u will be denoted either by $\binom{u}{a}$ or $|u|_{a}$. Let $A=\{0,1, \ldots, k\}$ be an alphabet. The Parikh map is an application $\Psi: A^{*} \rightarrow \mathbb{N}^{k+1}$ such that $\Psi(u)=\left(|u|_{0}, \ldots,|u|_{k}\right)^{T}$. Note that we will deal with column vectors (when multiplying a square matrix with a column vector on its right). In particular, two words are abelian equivalent if and only if they have the same Parikh vector. The mirror of the word $u=u_{1} u_{2} \cdots u_{k}$ is denoted by $\widetilde{u}=u_{k} \cdots u_{2} u_{1}$.

2. Avoiding 2-binomial squares over a 3-letter alphabet

Let $A=\{0,1,2\}$ be a 3-letter alphabet. Let $g: A^{*} \rightarrow A^{*}$ be the morphism defined by

$$
g:\left\{\begin{array}{l}
0 \mapsto 012 \\
1 \mapsto 02 \\
2 \mapsto 1
\end{array} \quad \text { and thus, } \quad g^{2}:\left\{\begin{array}{l}
0 \mapsto 012021 \\
1 \mapsto 0121 \\
2 \mapsto 02
\end{array}\right.\right.
$$

It is prolongable on 0 : $g(0)$ has 0 as a prefix. Hence the limit $\mathbf{x}=\lim _{n \rightarrow+\infty} g^{n}(0)$ is a well-defined infinite word

$$
\mathbf{x}=g^{\omega}(0)=012021012102012021020121 \cdots
$$

which is a fixed point of g. Since the original work of Thue, this word \mathbf{x} is well-known to avoid (usual) squares. It is sometimes referred to as the ternary Thue-Morse word. We will make use of the fact that $X=\{012,02,1\}$ is a prefix-code and thus an ω-code: Any finite word in X^{*} (resp. infinite word in X^{ω}) has a unique factorization as a product of elements in X. Let us make an obvious but useful observation.

https://daneshyari.com/en/article/433927

Download Persian Version:

https://daneshyari.com/article/433927

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: michael.rao@ens-lyon.fr (M. Rao), M.Rigo@ulg.ac.be (M. Rigo).
 1 The third author is supported by the Russian President's grant no. MK-4075.2012.1 and Russian Foundation for Basic Research grants no. 12-01-00089 and no. 11-01-00997 and by a University of Liège post-doctoral grant.

