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Consider a synchronous radio network of n stationary nodes represented by an undirected 
graph with maximum degree �. Suppose that each node has a unique ID from {1, . . . , U }, 
where U � n. In the neighbourhood learning task, each node must produce a list of the 
IDs of its neighbours in the network. We prove new lower bounds on the number of slots 
needed by certain classes of deterministic algorithms that solve this task. First, we show 
that O (U )-slot round-robin algorithms are optimal for the class of collision-free algorithms. 
Then, we consider algorithms where each node fixes its entire transmission schedule at the 
start. For such algorithms, we prove a �( �2

log �
log U )-slot lower bound on schedule length 

that holds in very general models, e.g., when nodes possess collision detectors, messages 
can be of arbitrary size, and nodes know the schedules being followed by all other nodes. 
We also prove a similar result for the SINR model of radio networks. To prove these results, 
we consider a generalization of cover-free families of sets. We also show a separation 
between the class of fixed-schedule algorithms and the class of algorithms where nodes 
can choose to leave out some transmissions from their schedule.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Neighbourhood learning is an important step in radio network initialization and in algorithms for tasks such as routing 
[2,17], medium-access control [3], and gossiping [15]. Further, in the study of local computation in distributed computing 
[23], the standard model assumes that information about nearby nodes can be efficiently collected. Ad hoc radio networks 
are often temporary networks that are set up in arbitrary configurations for a relatively short amount of time, so it may be 
necessary to perform neighbourhood learning frequently. If it is not known how to collect neighbourhood information in an 
efficient way, or, if we are able to prove a strong lower bound for neighbourhood learning, then the actual running time of 
a solution (that assumes that this information is known) can be significantly worse than what is suggested by the analysis 
of its running time.

We restrict our attention to deterministic solutions, which guarantee full neighbourhood discovery within a bounded 
amount of time that is known in advance. Our motivation stems from the fact that neighbourhood learning is often per-
formed as an initialization step before executing algorithms that perform more complex tasks. Randomized solutions that 
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always terminate quickly but allow small amounts of error may cause subsequent algorithms that depend on exact neigh-
bourhood information to fail.

1.2. Model

A static radio network consists of n nodes at arbitrary, fixed locations. Each node executes an algorithm that specifies 
when it will transmit and what is contained in each of its transmitted messages. When a node is not transmitting a mes-
sage, we say that it is listening. A node can only receive a message if it is listening. We assume that each node has a unique 
identifier (ID) from some range {1, . . . , U }. As a consequence of assigning every radio-equipped device a unique identifier, 
the range of node identifiers that appear in a given network can be significantly larger than the size of the network, so we 
assume that U � n. We assume that each node p knows the value of U as well as its own ID, denoted by ID(p).

We assume that time is partitioned into slots, where each slot is an interval of fixed length equal to the length of one 
transmission. We will only be considering networks where the nodes have synchronized clocks. This means that, for all 
i ≥ 1, all nodes execute the ith slot of their algorithm at the same time.

In our work, we consider two popular models of radio networks: the graph model and the SINR model. Additionally, to 
facilitate the proof of our lower bound in the SINR model, we also introduce a new SMAX model.

In the graph model, the network is represented by a graph in which two nodes are connected by an undirected edge 
if and only if they can communicate with one another. A transmission during slot t by a node q is received by a listening 
node p if and only if p is a neighbour of q and no neighbour of p other than v transmits during slot t . We say that a 
transmission collision occurs at node p during slot t if two or more neighbours of p transmit during slot t .

In the basic graph model, a listening node p receives nothing during a slot t in which a transmission collision occurs at 
p, i.e., p cannot distinguish between the case where no neighbours transmit and the case where two or more neighbours 
transmit. In some variants of the graph model, nodes are equipped with collision detectors. If a node p possesses a strong
collision detector, it can detect whether or not it is adjacent to at least one transmitting node (even if p is transmitting). If 
a node p possesses a weak collision detector, then p can detect whether or not it is adjacent to at least one transmitting 
node when it is listening, but cannot do so when it is transmitting.

In this paper, we say that a network consists of weak nodes if nodes do not possess collision detectors, each node can 
only send its own ID in each message, and no node has any knowledge about the transmission schedules of other nodes. 
A network consists of strong nodes if nodes possess strong collision detectors, nodes can send arbitrary messages, and each 
node initially knows the schedule associated with each node ID.

In the SINR model of radio networks [16], a listening node p receives a message from node q if q’s signal is sufficiently 
stronger than the sum of all other signals received at p (plus some constant amount of background noise). At p’s physical 
location, the strength of q’s signal is calculated as P/(d(q, p)α), where P is q’s transmission power, d(q, p) is the Euclidean 
distance between nodes q and p, and α is the path-loss exponent (usually taken to be greater than 2, so that a signal 
degrades at least quadratically with respect to distance). Assuming that all nodes transmit with the same power P (known 
as a uniform power assignment), the sum of all other signals received at p is calculated as 

∑
q′ �=q(P/d(q′, p)α) for all 

transmitting nodes q′ other than q. Formally, if S is a set of transmitting nodes, then node p receives a message from node 
q if P/d(q,p)α

N+∑
q′∈S−{q}(P/d(q′,p)α)

≥ β , where N represents the constant amount of background noise, and β is a parameter known 
as the minimum signal to interference ratio. We define q to be a neighbour of p if a transmission by q alone is received by p, 
namely, if P/(Nd(q, p)α) ≥ β .

In the SMAX model, there is a parameter, smax , that specifies the maximum number of simultaneous transmissions that 
can occur in a single slot such that at least one node receives a message. In particular, no nodes receive a message if greater 
than smax nodes transmit, and, otherwise, each node receives the message contained in the strongest signal it receives. In 
this model, we assume that each node can distinguish between a collision (i.e., when greater than smax nodes transmit) and 
the case where no nodes transmit.

1.3. Problem description

The goal of the neighbourhood learning task is for each node to output a list consisting of the IDs of all nodes with 
whom it can communicate. More formally, we say that a node v is a neighbour of node u if, when u is the only transmitting 
node, v receives u’s message. In this paper, it is assumed that v is a neighbour of u if and only if u is a neighbour of v . 
We define the neighbour graph Gnbr on the network nodes by the edge set {{u, v}| if u is the only transmitting node, v
receives u’s message}. For any network node v , we define v ’s neighbour set as NBRS(v) = {ID(u) | {u, v} ∈ E(Gnbr)}. The 
neighbourhood learning task requires that each network node v determines NBRS(v). We denote by � the maximum degree 
of Gnbr , namely, � = maxv |NBRS(v)|. We are interested in completing the neighbourhood learning task in as few slots as 
possible.

1.4. Classes of algorithms

A T -slot solution to the neighbourhood learning task is a deterministic algorithm executed by each node p ∈ V such that, 
in each time slot t , p either transmits a message (encoded as a finite binary string) or stays silent, and, at the end of slot 
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