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Two mobile agents, starting from different nodes of an n-node network at possibly different 
times, have to meet at the same node. This problem is known as rendezvous. Agents move 
in synchronous rounds using a deterministic algorithm. In each round, an agent decides 
to either remain idle or to move to one of the adjacent nodes. Each agent has a distinct 
integer label from the set {1, . . . , L}, which it can use in the execution of the algorithm, 
but it does not know the label of the other agent.
The main efficiency measure of a rendezvous algorithm’s performance is its time, i.e., the 
number of rounds from the start of the earlier agent until the meeting. If D is the distance 
between the initial positions of the agents, then �(D) is an obvious lower bound on the 
time of rendezvous. However, if each agent has no initial knowledge other than its label, 
time O (D) is usually impossible to achieve. We study the minimum amount of information 
that has to be available a priori to the agents to achieve rendezvous in optimal time �(D). 
Following the standard paradigm of algorithms with advice, this information is provided 
to the agents at the start by an oracle knowing the entire instance of the problem, i.e., 
the network, the starting positions of the agents, their wake-up rounds, and both of their 
labels. The oracle helps the agents by providing them with the same binary string called 
advice, which can be used by the agents during their navigation. The length of this string 
is called the size of advice. Our goal is to find the smallest size of advice which enables the 
agents to meet in time �(D). We show that this optimal size of advice is �(D log(n/D) +
log log L). The upper bound is proved by constructing an advice string of this size, and 
providing a natural rendezvous algorithm using this advice that works in time �(D) for 
all networks. The matching lower bound, which is the main contribution of this paper, is 
proved by exhibiting classes of networks for which it is impossible to achieve rendezvous 
in time �(D) with smaller advice.
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1. Introduction

1.1. Background

Two mobile agents, starting from different nodes of a network, have to meet at the same node in the same time. This 
distributed task is known as rendezvous and has received a lot of attention in the literature. Agents can be any mobile 
autonomous entities. They might represent human-made objects, such as software agents in computer networks or mobile 
robots navigating in a network of corridors in a building or a mine. They might also be natural, such as animals seeking a 
mate, or people who want to meet in an unknown city whose streets form a network. The purpose of meeting in the case 
of software agents or mobile robots might be the exchange of data previously collected by the agents or samples collected 
by the robots. It may also be the coordination of future network maintenance tasks, for example checking functionality of 
websites or of sensors forming a network, or decontaminating corridors of a mine.

1.2. Model and problem description

The network is modelled as an undirected connected graph with n unlabelled nodes. We seek deterministic rendezvous 
algorithms that do not rely on the agents perceiving node identifiers, and therefore can work in anonymous graphs as well 
(cf. [4]). The reason for designing such algorithms is that, even when nodes of the network have distinct identifiers, agents 
may be unable to perceive them because of limited sensory capabilities (e.g., a mobile robot may be unable to read signs at 
corridor crossings), or nodes may be unwilling to reveal their identifiers to software agents, e.g., due to security or privacy 
reasons. From a methodological point of view, if nodes had distinct identifiers visible to the agents, the agents could explore 
the graph and meet at the node with the smallest identifier. Hence, in this case, rendezvous reduces to graph exploration.

On the other hand, we assume that, at each node v , each edge incident to v has a distinct port number from the set 
{0, . . . , d − 1}, where d is the degree of v . These port numbers are fixed and visible to the agents. Port numbering is local
to each node, i.e., we do not assume any relation between port numbers at the two endpoints of an edge. Note that in the 
absence of port numbers, edges incident to a node would be undistinguishable for agents and thus rendezvous would be 
often impossible, as an agent may always miss some particular edge incident to the current node, and this edge could be 
a bridge to the part of the graph where the other agent started. The previously mentioned security and privacy reasons for 
not revealing node identifiers to software agents are irrelevant in the case of port numbers. If the graph models a system of 
corridors of a mine or a building, port numbers can be made implicit, e.g., by marking one edge at each intersection (using 
a simple mark legible even by a mobile robot with very limited vision), considering it as corresponding to port 0, and all 
other port numbers increasing clockwise.

Agents are initially located at different nodes of the graph and traverse its edges in synchronous rounds. They cannot 
mark visited nodes or traversed edges in any way, and they cannot communicate before meeting. The adversary wakes up 
each of the agents, possibly in different rounds. Each agent starts executing the algorithm in the round of its wake-up. It 
has a clock that ticks at each round and starts at the wake-up round of the agent. In each round, each agent either remains 
at the current node, or chooses a port in order to move to one of the adjacent nodes. When an agent enters a node, it 
learns the node’s degree and the port number by which it enters the node. When agents cross each other on an edge while 
traversing it simultaneously in different directions, they do not notice this fact.

Each agent has a distinct integer label from a fixed label space {1, . . . , L}, which it can use as a parameter in the same 
deterministic algorithm that both agents execute. It does not know the label nor the starting round of the other agent. 
Since we study deterministic rendezvous, the absence of distinct labels would preclude the possibility of meeting in highly 
symmetric graphs, such as rings or tori, for which there exist non-trivial port-preserving automorphisms. Indeed, in such 
graphs, identical agents starting simultaneously and executing the same deterministic algorithm can never meet, since they 
will keep the same positive distance in every round. Hence, assigning different labels to agents is the only way to break 
symmetry, as is needed to meet in every graph using a deterministic algorithm. On the other hand, if agents knew each 
other’s identities, then the smaller-labelled agent could stay inert, while the other agent would try to find it. In this case 
rendezvous reduces to graph exploration. Assuming such knowledge, however, is not realistic, as agents are often created 
independently in different parts of the graph, and they know nothing about each other prior to meeting.

The rendezvous is defined as both agents being at the same node in the same round. The main efficiency measure of 
a rendezvous algorithm’s performance is its time, i.e., the number of rounds from the start of the earlier agent until the 
meeting. If D is the distance between the initial positions of the agents, then �(D) is an obvious lower bound on the time 
of rendezvous. However, if the agents have no additional knowledge, time O (D) is usually impossible to achieve. This is 
due to two reasons. First, without any knowledge about the graph, even the easier task of treasure hunt [42], in which a 
single agent must find a target (treasure) hidden at an unknown node of the graph, takes asymptotically larger time in the 
worst case. Treasure hunt is equivalent to a special case of rendezvous where one of the agents is inert. In the worst case, 
this takes as much time as graph exploration, i.e., having a single agent visit all nodes. Second, even when the graph is so 
simple that navigation of the agents is not a problem, breaking symmetry between the agents, which is often necessary to 
achieve a meeting, may take time larger than D . Indeed, even in the two-node graph, where D = 1, rendezvous requires 
time �(log L) [18].
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