
Science of Computer Programming 114 (2015) 57–73

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Combinators and type-driven transformers in Objective Caml ✩

Dmitry Boulytchev

St. Petersburg State University, 198504, Universitetski pr., St. Petersburg, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2014
Received in revised form 1 July 2015
Accepted 21 July 2015
Available online 29 July 2015

Keywords:
Compilers
Functional programming
Datatype-generic programming
Combinators
Modularization and code reuse

We describe an implementation of LDTA 2011 Tool Challenge tasks in Objective Caml
language. Instead of using some dedicated domain-specific tools we utilize typical
functional programming machinery such as polymorphic functions, monads and combina-
tors; in addition we extensively use an idiom of type-driven transformers, which can be
considered as a form of datatype-generic programming. Our implementation provides a
good example of utilization of Objective Caml specific features such as open and implicitly
defined types. As a result we provide a highly modular implementation built up of
separately compiled components combined in a type-safe manner.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Objective Caml or, in short, OCaml [1,2] is a high-level programming language which has been developed, distributed and
supported by INRIA (Institut National de Recherche en Informatique et en Automatique, France) since 1985. As a member
of ML family this language provides a number of well-known statically typed functional programming features such as
first-class high-order functions, parametric polymorphism and type inference. In addition OCaml consistently incorporates
object-oriented traits — objects and classes with structural subtyping, rich module system with first-class modules and
functors (that is, modules parameterized by other modules) which makes it a full-fledged multiparadigm programming
language. The OCaml programming environment is equipped with syntax extension tools — CamlP41/CamlP52 — which
allows an end-user to extend the host language with domain-specific constructs.

We argue that in its present state OCaml is already rich enough to be directly used as an implementation formalism for
all the tasks listed for the tool challenge. Apart from parsing and pretty-printing which can be easily handled in a standard
way using parser- and printer combinators [3–5] the other tasks are rather simple transformations of abstract syntax trees.
We utilized the datatype-generic programming approach [6] in the form of type-driven transformers to implement most of
these transformations. “Type-driven” means that the semantics of transformers is completely determined by a type being
transformed so all transformers can be constructed mechanically from type definitions. Another property of transformers
is their extensibility: each transformer operates on a data structure of a partially-defined, or open, type. Transformers for
open types can be combined by a certain primitive to provide a transformer for the union type which still remains open
and so can be combined later on. As a result we can construct a highly modular structure of transformers each of which
implements some task on a certain trait of some common data structure.

✩ The research was supported by Russian Foundation for Basic Research grant No. 13-01-00506.
E-mail address: dboulytchev@math.spbu.ru.

1 http :/ /brion .inria .fr /gallium /index .php /Camlp4.
2 http :/ /pauillac .inria .fr /~ddr /camlp5/.

http://dx.doi.org/10.1016/j.scico.2015.07.008
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.07.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:dboulytchev@math.spbu.ru
http://brion.inria.fr/gallium/index.php/Camlp4
http://pauillac.inria.fr/~ddr/camlp5/
http://dx.doi.org/10.1016/j.scico.2015.07.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.07.008&domain=pdf

58 D. Boulytchev / Science of Computer Programming 114 (2015) 57–73

In our implementation we used type-driven transformers as a programming idiom — all transformers for all types were
hand-written. Later we refined this approach and implemented a separate datatype-generic programming tool3 making it
possible to generate the majority of implementation code from type declarations. During this refinement, however, the
details have changed significantly, so the implementation we present here is essentially different from that which would be
generated by the tool. Since we did not use any generic tool we strictly speaking did not need type declarations. Fortunately,
OCaml permits some sort of implicit type definitions — polymorphic variant and object types need not to be declared. We
heavily utilized this property — actually there is not a single type definition in our implementation: all types are introduced
implicitly and inferred from the transformation functions thus giving us a good example of a typeful programming with
no type declarations. In particular, there are no type definitions for abstract syntax trees — their types are inferred by the
compiler from the bodies of AST-processing functions.

The rest of the paper is structured as follows: in the next section we briefly describe polymorphic variant and object
types in OCaml, then we introduce the idiom of type-driven transformers which is essential for understanding tool challenge
tasks implementation description presented in Section 4. Section 5 reviews constructed artifacts and their metrics; the final
section concludes.

We would like to thank anonymous reviewers for their comments and remarks which helped us to improve this paper.

2. Open and implicitly defined types in OCaml

Our implementation essentially relies on open and implicitly defined types which are supported in OCaml in forms
of polymorphic variants and objects. We use implicitly-defined polymorphic variants to represent types of abstract syntax
trees. This approach allows us to completely reuse the type of base language AST when we extend it with a new constructs;
moreover using type-driven transformers we sum up not only types, but also their transformations.

Polymorphic variant types [7] were introduced in OCaml version 3.0. In short, polymorphic variants make it possible to
share the same constructor between different variant types with possibly different types and numbers of arguments. For
example, the following code snippet

type a = [‘A of int | ‘B of string]
type b = [‘A of string | ‘B of int]

is legitimate in OCaml despite these two types sharing the same constructors within the same scope.4 Like regular variant
types polymorphic variants can be matched against patterns, but need not be explicitly declared, so the following fragment

let implicit_a = function ‘A n→n | ‘B s→int_of_string s

typechecks even with no prior type declaration.5 The value declaration with inferred type, printed by the compiler, is shown
below:

val implicit_a : [< ‘A of int | ‘B of string]→int

Note that the inferred type for the argument of implicit_a describes a subtype of the polymorphic variant type with
constructors ‘A of int and ‘B of string, i.e. any type with fewer constructors, hence “[<” in its type description.

Another feature of polymorphic variant types is that they can be open — only some of their constructors may be known:

let opened_a = function
| ‘A n→n
| ‘B s→int_of_string s
| _ →0
val opened_a : [> ‘A of int | ‘B of string]→int

Here the inferred type for the argument of opened_a corresponds to any supertype of the polymorphic variant type with
constructors ‘A of int and ‘B of string, hence “[>”; thus, function opened_a can be applied to values of polymorphic
variant types with a wider set of constructors besides ‘A and ‘B.

Another interesting feature of polymorphic variants is that they can be summed up: if t1 and t2 are two polymorphic
variant types, then [t1 | t2] is their sum (provided that their constructors do not “contradict” each other). Moreover,
this sum can later be decomposed into its counterparts using the pattern-matching against special patterns:

match x with #t1 as a→ · · · | #t2 as b→· · ·
Here x has type [t1 | t2], a — type t1, b — type t2.
It is worth mentioning that recursive functions can implicitly introduce recursive polymorphic variant types. For example,

for the argument of the following function (which converts Peano-encoded naturals to regular integer values) a recursive
type is inferred:

3 https://github.com/dboulytchev/generic-transformers.
4 Polymorphic variant type constructors are lexically distinguished from the regular ones by the backquote as their first character.
5 In OCaml, keyword “function” can be used to define a function with one argument by case analysis — the single argument is matched against a

sequence of patterns, specified in the definition.

Download English Version:

https://daneshyari.com/en/article/433971

Download Persian Version:

https://daneshyari.com/article/433971

Daneshyari.com

https://daneshyari.com/en/article/433971
https://daneshyari.com/article/433971
https://daneshyari.com

