
Science of Computer Programming 80 (2014) 3–24

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A compositional model to reason about end-to-end QoS in Stochastic
Reo connectors
Young-Joo Moon a,∗, Alexandra Silva d,b,e, Christian Krause c, Farhad Arbab b

a INRIA, Bordeaux, France
b Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
c Hasso Plattner Institute (HPI), Potsdam, Germany
d Radboud University Nijmegen, Nijmegen, The Netherlands
e HASLab/INESC TEC, Universidade do Minho, Braga, Portugal

a r t i c l e i n f o

Article history:
Received 22 November 2010
Received in revised form 21 November
2011
Accepted 23 November 2011
Available online 1 December 2011

Keywords:
Coordination language
Reo
Continuous-ime Markov Chains
Quality of service
Compositional semantic model

a b s t r a c t

In this paper, we present a compositional semantics for the channel-based coordination
language Reo that enables the analysis of quality of service (QoS) properties of service
compositions. For this purpose, we annotate Reo channels with stochastic delay rates
and explicitly model data-arrival rates at the boundary of a connector, to capture its
interaction with the services that comprise its environment. We propose Stochastic Reo
Automata as an extension of Reo automata, in order to compositionally derive a QoS-
aware semantics for Reo. We further present a translation of Stochastic Reo Automata to
Continuous-Time Markov Chains (CTMCs). This translation enables us to use third-party
CTMC verification tools to do an end-to-end performance analysis of service compositions.
In addition, we discuss to what extent Interactive Markov Chains (IMCs) can serve as an
alternative semantic model for Stochastic Reo. We show that the semantics of Stochastic
Reo cannot be specified compositionally using the product operator provided by IMCs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In service-oriented computing (SOC), complexdistributed applications are built by composing existing – often third-party
– services using additional coordinationmechanisms, such asworkflow engines, component connectors, or tailor-made glue
code. Due to the high degree of heterogeneity and the fact that the owner of the application is not necessarily the owner
of its building blocks, issues involving quality of service (QoS) properties become increasingly entangled. Even if the QoS
properties of every individual service and connector are known, it is far from trivial to determine and reason about the
end-to-end QoS of a composed system in its application context. Yet, the end-to-end QoS of a composed service is often as
important as its functional properties in determining its viability in its market.

Reo [1], a channel-based coordination language, supports the composition of services, and typically, its semantics is
given in terms of Constraint Automata (CA) [2]. However, CA do not account for the QoS properties and cannot capture the
context-dependency [2] of Reo connectors. To capture context-dependency, Reo Automatawere introduced in [3]. However,
they also provide no means for modeling QoS properties. On the other hand, Quantitative Intentional Automata (QIA) were
proposed in [4] to account for the end-to-end QoS properties of Reo connectors. Unfortunately, no formal results are readily
available regarding the compositionality of QIA. Thus, in order to overcome the shortcomings of CA and QIA, mentioned
above, the design of a new compositional semantic model for Reo connectors was required.

∗ Corresponding author.
E-mail addresses: young-joo.moon@inria.fr (Y.-J. Moon), alexandra@cs.ru.nl (A. Silva), christian.krause@hpi.uni-potsdam.de (C. Krause), farhad@cwi.nl

(F. Arbab).

0167-6423/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2011.11.007

http://dx.doi.org/10.1016/j.scico.2011.11.007
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:young-joo.moon@inria.fr
mailto:alexandra@cs.ru.nl
mailto:christian.krause@hpi.uni-potsdam.de
mailto:farhad@cwi.nl
http://dx.doi.org/10.1016/j.scico.2011.11.007

4 Y.-J. Moon et al. / Science of Computer Programming 80 (2014) 3–24

For this purpose, in [5], we suggested Stochastic Reo Automata as a compositional semantic model for reasoning about
the end-to-end QoS properties, as well as handling the context-dependency of Reo connectors. We showed that the
compositionality results of Reo Automata extend to Stochastic Reo Automata. We also presented a translation of Stochastic
Reo Automata to Continuous-TimeMarkov Chains (CTMCs). This enabled the use of third-party tools for stochastic analysis.
Therefore, [5] shows a compositional approach for constructing Markov Chain (MC) models of complex composite systems,
using Stochastic Reo Automata as an intermediate model. Stochastic Reo Automata provide a compositional framework
wherein the corresponding CTMC model of a connector can be derived. This approach, thus, enabled us to model the QoS
properties of system behavior, where our translation derives a CTMC model for complex systems for subsequent analysis
by other tools. This paper is the extended version of [5] together with the contribution mentioned above. In this paper,
we provide more examples for Stochastic Reo, its semantic model, and the translation method. We show the proof of the
compositionality of Stochastic Reo Automata. In addition, we discuss to what extend Interactive Markov Chains (IMCs) can
serve as an alternative semantic model for Stochastic Reo.

2. Overview of Reo

Reo is a channel-based coordination model wherein so-called connectors are used to coordinate (i.e., control the
communication among) components or services exogenously (from outside of those components and services). In Reo,
complex connectors are compositionally built out of basic channels. Channels are atomic connectors with exactly two ends,
which can be either source or sink ends. Source ends accept data into, and sink ends dispense data out of their respective
channels. Reo allows channels to be undirected, i.e., to have respectively two source or two sink ends.

a b

Sync

a b

LossySync

a b

FIFO1

a b

SyncDrain

Fig. 1. Some basic Reo channels.

Fig. 1 shows the graphical representations of somebasic channel types. TheSync channel is a directed, unbuffered channel
that synchronously reads data items from its source end and writes them to its sink end. The LossySync channel behaves
similarly, except that it does not block if the party at the sink end is not ready to receive data. Instead, it just loses the data
item. FIFO1 is an asynchronous channel with a buffer of size one. The SyncDrain channel differs from the other channels in
that it has two source ends (and no sink end). If there is data available at both ends, this channel consumes (and loses) both
data items synchronously.

Channels can be joined together using nodes. A node can have one of three types: source, sink or mixed node, depending
on whether all ends that coincide on the node are source ends, sink ends or a combination of both. Source and sink nodes,
called boundary nodes, form the boundary of a connector, allowing interaction with its environment. Source nodes act as
synchronous replicators, and sink nodes as mergers. A mixed node combines both behaviors by atomically consuming a
data item from one sink end and replicating it to all of its source ends.

a b c d

Fig. 2. Example connector: LossyFIFO1.

An example connector is depicted in Fig. 2. It reads a data item from a, buffers it in a FIFO1 andwrites it to d. The connector
loses data items from a if and only if the FIFO1 buffer is already full. This construct, therefore, behaves as a connector called
(overflow) LossyFIFO1.

2.1. Semantics: Reo Automata

In this section, we recall Reo Automata [3], an automata model that provides a compositional operational semantics for
Reo connectors. Intuitively, a Reo Automaton is a non-deterministic automaton whose transitions have labels of the form
g|f , where f a set of nodes that fire synchronously, and g is a guard (boolean condition) that represents the presence or the
absence of I/O requests at nodes, i.e., the pending status of the nodes. A transition can be taken only when its guard g is true.

We recall some facts about Boolean algebras. Let Σ = {σ1, . . . , σk} be a set of symbols that denote names of connector
ports, σ be the negation of σ , and BΣ be the free Boolean algebra generated by the following grammar:

g ::= σ ∈ Σ | ⊤ | ⊥ | g ∨ g | g ∧ g | g

We refer to the elements of the above grammar as guards and in its representation we frequently omit ∧ and write g1g2
instead of g1 ∧ g2. Given two guards g1, g2 ∈ BΣ , we define a natural order ≤ as g1 ≤ g2 ⇐⇒ g1 ∧ g2 = g1. The intended
interpretation of ≤ is logical implication: g1 implies g2. An atom of BΣ is a guard a1 . . . ak such that ai ∈ Σ ∪ Σ with
Σ = {σ i | σi ∈ Σ}, 1 ≤ i ≤ k. We can think of an atom as a truth assignment. We denote atoms by Greek letters α, β, . . .

Download English Version:

https://daneshyari.com/en/article/433982

Download Persian Version:

https://daneshyari.com/article/433982

Daneshyari.com

https://daneshyari.com/en/article/433982
https://daneshyari.com/article/433982
https://daneshyari.com

