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in a non-intrusive fashion: the framework neither requires code instrumentation nor
does it affect the execution of the analyzed program. This is achieved using a dedicated
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Rz}:l‘/tvi?;esverification hardware unit that runs on a field programmable gate array in parallel to the analyzed
Past time LTL microcontroller program. Different instances of this framework are discussed, with varying
Embedded real-time systems degrees of expressiveness of the supported specification languages and complexity in the

hardware design. These instances range from invariant checkers for a restricted class of
linear template constraints to a programmable processor that supports past-time linear
temporal logic with timing constraints.
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1. Introduction

Long-standing research efforts in the fields of programming languages, compilers, and computer security have led to the
development of a large number of techniques to analyze programs for errors, security vulnerabilities, and all different kinds
of runtime properties. These techniques include, most notably, model checking, static analysis, and theorem proving, which
have been implemented in a wide variety of tools [ 1-17]. Most of the tools deal with the problem of proving that all possible
executions of a program adhere to its specification - which is typically given in some formal logic - whereas others serve
as bug-hunting frameworks. Yet, despite the impressive technical progress and the increasing number of success stories
from industry, this is an extremely challenging task due to the complexity as well as the sheer size of modern software
systems. Indeed, proving the functional correctness of a system consisting of about ten thousand lines of code represents
the state-of-the-art [ 18]. Most real-world software clearly exceeds these limitations.

1.1. Fault detection by testing

Conventional testing is less ambitious. Rather than proving that all possible executions of a system satisfy its specification,
only a finite subset of these executions is examined during the (software) development process. Hence, testing merely raises
confidence in the correctness (or reliability) of the system, instead of proving the absence of runtime errors [19]. Industry
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typically enforces a strict development process where testing is the predominant method, even if highest correctness
requirements apply, e.g., because of ultra-high reliability requirements which are present in the avionics industry [20].
One may argue that this is due to the lack of feasible (and affordable) alternatives. The classical approach in testing follows
a guess-and-check paradigm: one guesses a configuration of the program inputs (the test case) and checks the results of the
individual test runs. The former can - to a large extent - be automated by test-case generation techniques [21], which often
follow some coverage criterion. However, the arduous task of defining the reference results of each test-case execution then
typically remains with a test engineer. With respect to test automation, it is thus highly desirable to automatically evaluate
the outcome of a single test trace when executed.

1.2. Runtime verification by code instrumentation

In recent years, runtime verification [22] has gained increasing interest as it bridges the gap between traditional
formal verification and testing. As in testing, runtime verification does not prove the absence of errors, yet it provides
a systematic way to link the test-case executions to a formal specification. Test oracles, which reflect the specification,
are either automatically derived (e.g., from a given temporal logic formula that specifies a requirement) or formulated
manually in some form of executable code. Correctness of an execution is then judged by means of a monitor [23,24] which
evaluates sequences of events in an instrumented version of the program under scrutiny. Instrumentation can either be
done manually or automatically, for instance, by scanning available programs for assignments and function calls at the level
of the implementation language. Function calls are then inserted to emit relevant events to an observer. The latter approach
has proven feasible for high-level implementation languages such as C, C++, and Java, as well as for hardware description
languages such as VHDL or Verilog. An important advantage of runtime verification over testing is that runtime verification
allows the monitor to respond to the analyzed system, a technique that is frequently referred to as steering. For example,
if a runtime verification framework detects a serious flaw in a railway control system that is in operation, it can steer the
system into a safe state, thereby avoiding failure [25]. Various runtime verification frameworks have thus emerged [26-30].

1.3. Pitfalls of code instrumentation

Yet, despite considerable technical progress, existing approaches to runtime verification are not directly transferable to
the domain of (safety-critical) embedded systems software, mainly due to the following reasons:

e Code instrumentation increases memory consumption. This factor is of economical relevance for small-sized embedded
target platforms and applies to both, the program memory as well as RAM. The relevance of this aspect is emphasized by
the fact that restricted architectures are often used in critical environments [31] (such as nuclear power plants) to avoid
unpredictable timing behavior, e.g., caused by caches.

e The timing behavior of the system is altered by code instrumentation [32,33]. The additional runtime overhead may have
devastating consequences for heavy-loaded real-time applications with tight deadlines.

e Code instrumentation alters the program and is thus impracticable for certified systems as it requires the re-certification
of the affected program parts.

e Embedded code often adopts target-specific language extensions, direct hardware register and peripheral access, and
embedded assembly code [34,35]. When instrumenting a high-level code basis that uses such features, one has to take
all the particularities of the target hardware into account, depleting the prospect of a generic approach.

e Instrumentation at binary code level, in turn, is incomplete (i.e., it does not provide 100% instrumentation coverage) as
long as a sound approximation of the control flow graph (CFG) is not reconstructed from the binary program.! Although
CFG reconstruction from executable code is an active area of research [38-41], generating sound yet precise results
remains a challenge.

e In its present shape, runtime verification analyzes the correctness of high-level code. However, to show that a high-
level specification is correctly reproduced by the executable program, it is further necessary to verify the translation
applied to the high-level code (as it is not unknown for compilation to introduce errors [42-44]). One thus needs to
prove that for a given source program P, if the compiler generates a binary code B without errors, then B behaves like
P [45]. Formally verified compilers are a topic in research for almost half a century [46,47], however, despite some recent
breakthroughs [48,49], only few verified compilers are used in practice. Flaws introduced by a compiler may thus remain
undetected by existing approaches.

In a recent paper, Pike et al. [50, Section 3] have studied the application of runtime verification to systems with ultra-high
reliability requirements. There, they have provided a generalization of these low-level aspects, called FaCTS:

e Functionality: The runtime verification system must not change the target’s behavior.
e Certifiability: The runtime verification system must not make re-certification of the target onerous.

1 of course, this only applies to static instrumentation techniques. Dynamic binary instrumentation frameworks such as VALGRIND [36,37] use dynamic
techniques akin to just-in-time compilation, which sidesteps this problem.
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