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A clique-coloring of a graph G is a coloring of the vertices of G so that no maximal clique 
of size at least two is monochromatic. The clique-hypergraph, H(G), of a graph G has V (G)

as its set of vertices and the maximal cliques of G as its hyperedges. A (vertex) coloring 
of H(G) with no monochromatic hyperedge is a clique-coloring of G . The clique-chromatic 
number of G is the least number of colors for which G admits a clique-coloring. Every 
planar graph has been proved to be 3-clique-colorable and every claw-free planar graph, 
different from an odd cycle, has been proved to be 2-clique-colorable. In this paper we first 
generalize the result of planar graphs to K5-minor-free graphs. Furthermore, we generalize 
the result of claw-free planar graphs to K5-subdivision-free graphs and give a polynomial-
time algorithm to find a 2-clique-coloring of K5-subdivision-free graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A hypergraph H is a pair (V , E) where V is a finite set of vertices and E is a family of non-empty subsets of V called 
hyperedges. A k-coloring of H is a function φ : V → {1, 2, . . . , k} such that for each S ∈ E , with |S| ≥ 2, there exist u, v ∈ S
with φ(u) �= φ(v), that is, there is no monochromatic hyperedge of size at least two. If such a function exists we say that 
H is k-colorable. The chromatic number χ(H) of H is the smallest k for which H admits a k-coloring. In other words, a 
k-coloring of H is a partition P of V into at most k parts such that no hyperedge of cardinality at least 2 is contained in 
some P ∈P .

Here we consider hypergraphs arising from graphs: for an undirected simple graph G , we call clique-hypergraph of G
(or hypergraph of maximal cliques of G) the hypergraph H(G) = (V (G), E) which has the same vertices as G and whose 
hyperedges are the maximal cliques of G (a clique is a complete induced subgraph of G , and it is maximal if it is not properly 
contained in any other clique). A k-coloring of H(G) is also called a k-clique-coloring of G , and the chromatic number 
χ(H(G)) of H(G) is called the clique-chromatic number of G , denoted by χC (G). A coloring of H(G) is strong if no triangle 
of G is monochromatic. If H(G) is (strong) k-colorable we say that G is (strong) k-clique-colorable.

Note that what we call k-clique-coloring here is also called weak k-coloring by Andreae, Schughart and Tuza in [1,3]
or strong k-division by Hoáng and McDiarmid in [12]. Clearly, any (vertex) k-coloring of G is a k-clique-coloring of G , so 
χC (G) ≤ χ(G). On the other hand, note that if G is triangle-free (contains no clique on three vertices), then H(G) = G , 
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which implies χC (G) = χ(G). Since the chromatic number of triangle-free graphs is known to be unbounded [18], we get 
that the same is true for the clique-chromatic number.

The clique-hypergraph coloring problem was posed by Duffus et al. [9]. In general, clique-coloring can be a very differ-
ent problem from ordinary vertex coloring [2]. Clique-coloring is harder than ordinary vertex coloring: it is coNP-complete 
even to check whether a 2-clique-coloring is valid [2]. The complexity of 2-clique-colorability is investigated in [14], where 
they show that it is NP-hard to decide whether a perfect graph is 2-clique-colorable. However, it is not clear whether this 
problem belongs to NP. Recently, Marx [16] proved that it is 

∑p
2 -complete to check whether a graph is 2-clique-colorable. 

On the other hand, Bacsó et al. [2] proved that almost all perfect graphs are 3-clique-colorable. Andreae et al. [1] gave a 
necessary and sufficient condition for χC (L(G)) ≤ k on line graph L(G) of a graph G . Recently, Campos et al. [5] showed that 
powers of cycles is 2-clique-colorable, except for odd cycles of size at least five, that need three colors, and showed that 
odd-seq circulant graphs are 4-clique-colorable. Many papers focus on finding the classes of graphs G with χC (G) = 2. Bacsó 
et al. [2] showed that claw-free graphs with no odd hole (which includes claw-free prefect graphs) are 2-clique-colorable. 
Bacsó and Tuza [3] showed that claw-free graphs of maximum degree at most four, other than an odd cycle, are 2-clique-
colorable. Many subclasses of odd-hole-free graphs have been studied and shown to be 2-clique-colorable [6,7,9]. Other 
works considering the clique-hypergraph coloring problem in classes of graphs can be found in the literature [11–13,15].

For planar graphs, Mohar and Škrekovski [17] have shown that every planar graph is 3-clique-colorable, and Kratochvíl 
and Tuza [14] proposed a polynomial-time algorithm to decide if a planar graph is 2-clique-colorable (the set of cliques is 
given in the input). Recently, Shan, Liang and Kang [21] proved that claw-free planar graphs that are not odd cycles are 
2-clique-colorable.

Theorem 1.1. (See Mohar and Škrekovski [17].) Every planar graph is strongly 3-clique-colorable.

Theorem 1.2. (See Shan, Liang and Kang [21].) Every claw-free planar graph, different from an odd cycle, is 2-clique-colorable.

The purpose of this paper is to generalize Theorem 1.1 and Theorem 1.2 to K5-minor-free graphs and K5-subdivision-free 
graphs, respectively. Section 2 gives some notation and terminology. In Section 3, we first show that every edge-maximal 
K4-subdivision-free graph is 2-clique-colorable. Secondly, we show that every K5-minor-free graph is strongly 3-clique-
colorable. However, the clique-coloring problem of K5-subdivision-free graphs remains open. In Section 4, we prove that 
every {claw, K5-subdivision}-free graph G , different from an odd cycle, is 2-clique-colorable and a 2-clique-coloring can be 
found in polynomial time.

2. Preliminaries

Let G be an undirected simple graph with vertex set V (G) and edge set E(G). If H is a subgraph of G , then the vertex 
set of H is denoted by V (H). For v ∈ V (G), the open neighborhood N(v) of v is {u: uv ∈ E(G)}, and the closed neighborhood
N[v] of v is N(v) ∪ {v}. The degree of the vertex v , written dG(v) or simply d(v), is the number of edges incident to v , 
that is, dG (v) = |N(v)|. The maximum and minimum degrees of G are denoted by Δ(G) and δ(G), respectively. For a subset 
S ⊆ V (G), the subgraph induced by S is denoted by G|S . As usual, Km,n denotes a complete bipartite graph with classes of 
cardinality m and n; Kn is the complete graph on n vertices, and Cn is the cycle on n vertices. The graph K1,3 is also called a 
claw, and K3 a triangle. The graph K4 −e (obtained from K4 by deleting one edge) is called a diamond. A graph G is claw-free
if it does not contain K1,3 as an induced subgraph. Any graph derived from a graph F by a sequence of edge subdivisions is 
called a subdivision of F or an F -subdivision. A graph H is an F -minor if F can be obtained from H by means of a sequence 
of vertex and edge deletions and edge contractions, and the graph F is a minor of H . A graph G is F -subdivision-free if G
has no F -subdivision as a (not necessarily induced) subgraph. A graph G is F -minor-free if G has no F -minor. For a family 
{F1, . . . , Fk} of graphs, we say that G is {F1, . . . , Fk}-free if it is Fi -free for all i. Obviously, any graph G which contains 
an F -subdivision also has an F -minor. Thus an F -minor-free graph is necessarily F -subdivision-free, but not conversely. 
However, if F is a graph of maximum degree three or less, any graph which has an F -minor also contains an F -subdivision 
(see, [4, page 269]). So a graph does not contain a K4-minor if and only if it does not contain a K4-subdivision. The family 
of K5-subdivision (-minor)-free graphs is a generalization of the planar graphs.

For an integer k, a clique of size k of a graph G is called a k-clique of G . The largest such k is the clique number of 
G , denoted ω(G). A subset I of vertices of G is called an independent set of G if no two vertices of I are adjacent in G . 
The maximum cardinality of an independent set of G is the independence number α(G) of G . A set D ⊆ V (G) is called a 
clique-transversal set of G if D meets all cliques of G , i.e., D ∩ V (C) �= ∅ for every clique C of G . The clique-transversal number, 
denoted by τC (G), is the cardinality of a minimum clique-transversal set of G . The notion of clique-transversal set in graphs 
can be regarded as a special case of the transversal set in hypergraph theory. Erdős et al. [10] have proved that the problem 
of finding a minimum clique-transversal set for a graph is NP-hard. It is therefore of interest to determine bounds on the 
clique-transversal number of a graph. In [10] Erdős et al. proposed to find sharp estimates on the clique-transversal number 
τC (G) for particular classes of graphs G (planar graphs, perfect graphs, etc.).

Let G be a planar graph and C a cycle of G . The interior Int(C ) of C denotes the subgraph of G consisting of C and all 
vertices and edges in the disk bounded by C . Similarly, Ext(C) ⊆ G is the exterior of C . Obviously, Int(C) ∩ Ext(C) = C .
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