
Science of Computer Programming 113 (2015) 191–220

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Designing a verifying compiler: Lessons learned from 

developing Whiley

David J. Pearce ∗, Lindsay Groves

School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2014
Received in revised form 27 September 
2015
Accepted 29 September 2015
Available online 21 October 2015

Keywords:
Program verification
Loop invariants
Hoare logic
Verification tools

An ongoing challenge for computer science is the development of a tool which automati-
cally verifies programs meet their specifications, and are free from runtime errors such 
as divide-by-zero, array out-of-bounds and null dereferences. Several impressive systems 
have been developed to this end, such as ESC/Java and Spec#, which build on existing 
programming languages (e.g., Java, C#). We have been developing a programming language 
from scratch to simplify verification, called Whiley, and an accompanying verifying 
compiler. In this paper, we present a technical overview of the verifying compiler and 
document the numerous design decisions made. Indeed, many of our decisions reflect 
those of similar tools. However, they have often been ignored in the literature and/or 
spread thinly throughout. In doing this, we hope to provide a useful resource for those 
building verifying compilers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The idea of verifying that a program meets a given specification for all possible inputs has been studied for a long time. 
Hoare’s Verifying Compiler Grand Challenge was an attempt to spur new efforts in this area to develop practical tools [1]. 
According to Hoare’s vision, a verifying compiler “uses automated mathematical and logical reasoning to check the correctness 
of the programs that it compiles” [1]. Hoare’s intention was that verifying compilers should fit into the existing development 
tool chain, “to achieve any desired degree of confidence in the structural soundness of the system and the total correctness of its more 
critical components”. For example, commonly occurring errors could be automatically eliminated, such as: division-by-zero, 
integer overflow, buffer overruns and null dereferences.

The first systems that could be reasonably considered as verifying compilers were developed some time ago, and include 
that of King [2], Deutsch [3], the Gypsy Verification Environment [4] and the Stanford Pascal Verifier [5]. Following on from 
these was the Extended Static Checker for Modula-3 [6]. Later, this became the Extended Static Checker for Java (ESC/Java) 
— a widely acclaimed and influential work in this area [7]. Building on this success was the Java Modelling Language (and 
its associated tooling) which provided a standard notation for specifying functions in Java [8,9]. Since then a variety of other 
tools have blossomed in this space, including Spec# [10,11], Dafny [12,13], Why3 [14] and VeriFast [15,16].

Much of the research in verifying compilers has targeted established languages (e.g., Java, C, C#, etc.). Unfortunately, such 
languages were not designed for verification and contain numerous problematic features, including: fixed-width number 
representations [17,18], unrestricted pointers [19], arbitrary side-effects [20], closures [21] and flexible threading mod-

* Corresponding author.
E-mail addresses: djp@ecs.vuw.ac.nz (D.J. Pearce), lindsay@ecs.vuw.ac.nz (L. Groves).

http://dx.doi.org/10.1016/j.scico.2015.09.006
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.09.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:djp@ecs.vuw.ac.nz
mailto:lindsay@ecs.vuw.ac.nz
http://dx.doi.org/10.1016/j.scico.2015.09.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.09.006&domain=pdf


192 D.J. Pearce, L. Groves / Science of Computer Programming 113 (2015) 191–220

els [22,23]. The alternative, of course, is to design programming languages from scratch specifically for this purpose. Barnett 
et al. argue this “lets a language designer pick features that mesh well with verification” [10].

In this vein, we have developed a programming language from scratch, called Whiley, and an accompanying verifying 
compiler [24–28]. Whiley is an imperative language designed primarily to simplify verification. The project’s goals are:

1. Ease of Use. An important goal is to develop a system which is as accessible as possible, and which one could imagine 
being used in a day-to-day setting. To that end, the language was designed to superficially resemble modern imperative 
languages (e.g., Python). To simplify verification, Whiley employs unbounded integer and rationals rather than fixed-
width arithmetic. Likewise, to further reduce programmer burden, simple loop invariants are inferred where possible.

2. Scope. Another important goal of the project is to enable programs to be automatically verified as: correct with 
respect to their declared specifications; and, free from runtime error (e.g., divide-by-zero, array index-out-of-bounds, 
etc.). However, more complex properties such as termination, worst-case execution time, worst-case stack depth, etc.
are not considered (although would be interesting future work). This impacts the language design as, for ex-
ample, we do not provide syntax for expressing loop variants (i.e., establishing termination is not a considera-
tion).

3. Demonstration. Another important goal of the project is to demonstrate that Whiley is suitable for developing safety-
critical systems. This means, for example, that Whiley programs must be executable and can be integrated into existing 
systems (i.e., via a foreign function interface). To this end, we are initially targeting small embedded systems (see 
Section 8).

Many of these goals are seemingly at odds with each other. For example, unbound arithmetic is not suitable for em-
bedded systems. In many cases, we can work around this by exploiting function specifications as these provide rich 
information [29]. When compiling for an embedded device we can, for example, require all integers used within a function 
are bounded using appropriate invariants (i.e., that they are required to be within certain ranges, etc.). Thus, the difficulty of 
verification is layered. That is, users need not initially worry about bounded arithmetic and, instead, can focus on learning 
and understanding the verification process. Later on, if they wish to target an embedded system, they must then further re-
fine their specifications to allow this. To these ends, we have successfully compiled Whiley programs to run on a quadcopter 
(see Section 8). Likewise, we have used Whiley to teach students at Victoria University of Wellington about verification (see 
Section 8). Finally, the Whiley verifying compiler is released under an open source license (BSD), and can be downloaded 
from http :/ /whiley.org and forked at http :/ /github .com /Whiley/. All examples in this paper have been tested against the 
latest release at the time of writing (version 0.3.36).

1.1. Contribution

The primary contribution of this paper lies in documenting numerous important issues faced in developing a verifying 
compiler and the decisions we made. Many of our choices reflect those of similar systems such as Dafny, Spec#, ESC/Java, 
etc. Such decisions are often left undocumented, or spread throughout numerous papers in the literature. By bringing these 
together in one place we hope to provide a useful resource for those designing and implementing verifying compilers. Note, 
however, this paper does not attempt to evaluate our language design against those goals outlined above, and this remains 
as future work.

Finally, an earlier version of this paper was published at the Workshop on Formal Techniques for Safety-Critical Systems 
(FTSCS’13) [30]. We present here a significantly revised and extended version of that paper, which includes additional 
discussion of our experiences, a small evaluation against benchmarks from the COST’11 [31] and VSCOMP’10 [32] verification 
competitions and three case studies looking at Whiley in the context of teaching, embedded systems and alternative SMT 
solvers.

1.2. Organisation

We provide a general introduction to verification with Whiley in Section 2, followed by an overview of the compiler 
architecture in Section 3. In Section 4, we provide a detailed discussion of the salient design choices made and their 
implications in practice. Then, in Section 5 and Section 6 we reflect on experiences gained from verifying programs with 
Whiley. Following this is a small evaluation of Whiley’s verification capability in Section 7 and a discussion of three case 
studies in Section 8. Finally, related work is discussed in Section 9 before we conclude in Section 10.

2. Language overview

In this section, we introduce the Whiley language in the context of software verification through a series of examples. 
However, we do not provide an exhaustive examination of the language and, instead, the interested reader may find more 
detailed introductions elsewhere [33,34].

http://whiley.org
http://github.com/Whiley/


Download English Version:

https://daneshyari.com/en/article/434012

Download Persian Version:

https://daneshyari.com/article/434012

Daneshyari.com

https://daneshyari.com/en/article/434012
https://daneshyari.com/article/434012
https://daneshyari.com

