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We consider the following online scheduling problem in which the input consists of n jobs 
to be scheduled on identical machines of bounded capacity g (the maximum number of 
jobs that can be processed simultaneously on a single machine). Each job is associated with 
a release time and a completion time between which it is supposed to be processed. When 
a job is released, the online algorithm has to make decision without changing it afterwards. 
A machine is said to be busy at a certain time if there is at least one job processing on 
the machine at that time. We consider two versions of the problem. In the minimization 
version, the goal is to minimize the total busy time of machines used to schedule all jobs. 
In the resource allocation maximization version, the goal is to maximize the number of 
jobs that are scheduled under a budget constraint given in terms of busy time. This is 
the first study on online algorithms for these problems. We show a rather large lower 
bound on the competitive ratio for general instances. This motivates us to consider special 
families of input instances for which we show constant competitive algorithms. Our study 
has applications in power-aware scheduling, cloud computing and optimizing switching 
cost of optical networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem. Job scheduling on parallel machines has been widely studied (see, e.g., the surveys in [5,21]). In particular, 
much attention was given to interval scheduling [20], where jobs are given as intervals on the real line, each representing the 
time interval during which a job should be processed; each job has to be processed on some machine, and it is commonly 
assumed that a machine can process a single job at any given time.

In this paper we consider online interval scheduling with bounded parallelism. Formally, the input is a set J of n jobs. 
Each job, J ∈J , is associated with an interval [r J , c J ] during which it should be processed. We are also given the parallelism 
parameter g ≥ 1, which is the maximum number of jobs that can be processed simultaneously by a single machine. At any 
given time t a machine Mi is said to be busy if there is at least one job J scheduled on it such that t ∈ [r J , c J ], otherwise 
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Mi is said to be idle at time t . We call the time period in which a machine Mi is busy its busy period. In this work we 
study two optimization problems MinBusy and MaxThroughput. In MinBusy we focus on minimizing the total busy time 
over all machines. Note that a solution minimizing the total busy time may not be optimal in terms of the number of 
machines used. In Section 5.3 we discuss the relation between MinBusy and minimization of the number of machines. In
MaxThroughput, the resource allocation version of the problem, we are given a budget T of total machine busy time and 
the objective is to maximize the number of scheduled jobs under this constraint.

The input to our scheduling problems can be viewed as an interval graph, which is the intersection graph of a set 
of intervals on the real line. It has one vertex for each interval in the set, and an edge between every pair of vertices 
corresponding to intersecting intervals. In our setting, each vertex corresponds to a job, and there is an edge between two 
jobs whose processing times overlap.

Applications. Our scheduling problems can be directly interpreted as power-aware scheduling problems in cluster sys-
tems. These problems focus on minimizing the power consumption of a set of machines (see, e.g., [31] and references 
therein) measured by the amount of time the machines are switched on and processing, i.e. the total busy time. It is 
common that a machine has a bound on the number of jobs that can be processed at any given time.

Another application of the studied problems comes from cloud computing (see, e.g., [27,30]). Commercial cloud comput-
ing provides computing resources with specified computing units. Clients with computation tasks require certain computing 
units of computing resources over a period of time. Clients are charged in a way proportional to the total amount of com-
puting time of the computing resource. The clients would like to minimize the charges they have to pay (i.e. minimize the 
amount of computing time used) or maximize the amount of tasks they can compute with a budget on the charge. This is 
in analogy to our minimization and maximization problems, respectively.

Our study is also motivated by problems in optical network design (see, e.g., [9,11,12]). Optical wavelength-division mul-
tiplexing (WDM) is the leading technology that enables us to deal with the enormous growth of traffic in communication 
networks, like the Internet. In an optical network, communication between nodes is realized by lightpaths, each of which is 
assigned a certain color. As the energy of the signal along a lightpath decreases, regenerators are needed in order to regen-
erate the signal, thus the associated hardware cost is proportional to the length of the lightpaths. Furthermore, connections 
can be “groomed” so that a regenerator placed at some node v and operating at some color λ can be shared by at most 
g connections colored λ and traversing v . This is known as traffic grooming. The regenerator optimization problem on the 
path topology is in analogy to our scheduling problem in the sense that the regenerator cost measured in terms of length 
of lightpaths corresponds to the busy time while grooming corresponds to the machine capacity.

In the above three applications, it is natural to consider online version of the problem where jobs arrive at arbitrary time 
and decisions have to be made straightaway (see e.g., [25,27,30]).

Related work. Some of the earlier work on interval scheduling considers the problem of scheduling a feasible subset of 
jobs with maximum total weight, i.e., a maximum weight independent set (see, e.g., [2] and surveys in [17,18]). There is wide 
literature on real-time scheduling, where each job has to be processed on some machine during a time interval between 
its release time and due date. There are also studies on real-time scheduling, where each machine has some capacity and 
each job has a demand of a certain machine capacity; however, to the best of our knowledge, all of this prior work (see, 
e.g., [2,6,8,28]) refers to different flavor of the model than the one presented here. Interval scheduling has been studied 
in the context of online algorithms and competitive analysis [19,22]. It is also common to consider both minimization and 
maximization versions of the same scheduling problem, see e.g., [3] but in that model the machines have unit capacity.

Our study also relates to batch scheduling of conflicting jobs, where the conflicts are given as an interval graph. In 
p-batch scheduling model (see, e.g., Chapter 8 in [5]) a set of jobs can be processed jointly. All the jobs in the batch start 
simultaneously, and the completion time of a batch is the last completion time of any job in the batch. (For known results 
on batch scheduling, see, e.g., [5].) Our scheduling problem differs from batch scheduling in several aspects. In our problems, 
each machine can process g jobs simultaneously, for some g ≥ 1, the jobs need not be partitioned to batches, i.e., each job 
can start at different time. Also, while in known batch scheduling problems the set of machines is given, we assume that 
any number of machines can be used for the solution. Finally, while common measures in batch scheduling refer to the 
maximum completion time of a batch, or a function of the completion times of the jobs, we consider the total busy times 
of the machines.

Previous work on busy time scheduling. The complexity of MinBusy was studied in [32], which showed that the problem 
is NP-hard already for g = 2. The work [13] considered the problem where jobs are given as intervals on the line with unit 
demand. For this version of the problem it gives a 4-approximation algorithm for general inputs, and better bounds for some 
subclasses of inputs. In particular, 2-approximation algorithms were given for instances where no job interval is properly 
contained in another interval (called “proper” instance), and “clique” instances where any two job intervals intersect, i.e., 
the input forms a clique (see same approximation but different algorithm and analysis in [14]). The work [16] extends the 
results of [13], considering the case where each job has a different demand on machine capacity and possibly has some 
slack time. The work [26] improves upon [13] on some subclasses of inputs and initiates the study of MaxThroughput. 
A 6-approximation is proposed for clique instances, and a polynomial time algorithm is proposed for proper clique instances, 
i.e. instances that are both “clique” and “proper”. These special instances have been considered in [16,26]. The study so far 
has been focused on the offline setting [13,14,16,26].
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