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We study a relaxation of the Vector Domination problem called Vector Connectivity

(VecCon). Given a graph G with a requirement r(v) for each vertex v , VecCon asks for 
a minimum cardinality set S of vertices such that every vertex v ∈ V \ S is connected 
to S via r(v) disjoint paths. In the paper introducing the problem, Boros et al. [4] gave 
polynomial-time solutions for VecCon in trees, cographs, and split graphs, and showed 
that the problem can be approximated in polynomial time on n-vertex graphs to within 
a factor of logn + 2, leaving open the question of whether the problem is NP-hard on 
general graphs. We show that VecCon is APX-hard in general graphs, and NP-hard in 
planar bipartite graphs and in planar line graphs. We also generalize the polynomial result 
for trees by solving the problem for block graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and background

Recently, Boros et al. [4] introduced the Vector Connectivity problem (VecCon) in graphs. This problem takes as input a 
graph G and an integer r(v) ∈ {0, 1, . . . , d(v)} for every vertex v of G , where d(v) denotes the degree of v , and the objective 
is to find a vertex subset S of minimum cardinality such that every vertex v either belongs to S , or is connected to at least 
r(v) vertices of S by vertex-disjoint paths. If we require each path to be of length exactly 1, we get the well-known Vector 
Domination problem [10], which is a generalization of the famous Dominating Set and Vertex Cover problems.

The Vector Connectivity problem is one of the several problems related to domination and connectivity, which have 
seen renewed attention in the last few years in connection with the flourishing area of information spreading (see, e.g., [10,
11,7,8,1,5,6] and references therein quoted). In a viral marketing campaign one of the problems is to identify a set of targets 
in a (social) network that can be influenced (e.g., on the goodness of a product) and such that from them most/all the 
network can be influenced (e.g., convinced to buy the product). The model is based on the assumption that each vertex has 
a threshold r(v) such that when r(v) neighbors are influenced, also v will get convinced. Assume now that for v it is not 
enough that r(v) neighbors are convinced about the product. Vertex v also requires that their motivations are independent. 
A way to model this “skeptic” variant of influence spreading is to require that each vertex in the network must be reached 
by r(v) vertex-disjoint paths originating in the target set.

Another scenario where the vector connectivity problem arises is the following: Each vertex in a network produces a 
certain amount of a given good. We want to place in the network warehouses where the good can be stored. For secu-
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rity/resilience reasons it is better if from each source to each destination (warehouse) only a small amount of the good (e.g., 
one unit) travels at once. In particular, it is preferred if the units of good from one location to the different warehouses 
travel on different routes. This reduces the risk that if delivery gets intercepted or attacked or interrupted by a fault on the 
network a large amount of the good gets lost. It is not hard to see that finding the minimum number of warehouses given 
the amount of units produced at each vertex coincides with the vector connectivity problem.

Boros et al. developed polynomial-time algorithms for VecCon on split graphs, cographs, and trees, and showed how 
to model the problem as a minimum submodular cover problem, leading to a polynomial-time algorithm approximating
VecCon within a factor of ln n + 2 on all n-vertex graphs. One of the questions left open in that paper was whether on 
general graphs, VecCon is polynomially solvable or NP-hard. In this paper, we answer this question by showing that VecCon

is APX-hard (and consequently NP-hard) in general graphs. Our reduction is from the Vertex Cover problem in cubic graphs. 
Simple modifications of the hardness proof allow us to also show that VecCon is hard in several graph classes for which the
Vertex Cover problem is polynomially solvable, such as bipartite graphs and line graphs.

Our hardness results remain valid for input instances in which the vertex requirements r(v) are bounded by 4. On the 
other hand, we show that VecCon can be solved in polynomial time for requirements bounded by 2, thus leaving open only 
the case with maximum requirement 3. We also develop a polynomial-time solution for VecCon in block graphs, thereby 
generalizing the result by Boros et al. [4] showing that VecCon is polynomial on trees. This result is obtained by introducing 
a more general problem called Free-Set Vector Connectivity (FreeVecCon for short), and developing an algorithm that 
reduces an instance of FreeVecCon to solving instances of FreeVecCon on biconnected components of the input graph.

Vertex covers and dominating sets in a graph G can be easily characterized as hitting sets of derived hypergraphs 
(of G itself, and of the closed neighborhood hypergraph of G , respectively). We give a similar characterization of vector 
connectivity sets.

The paper is structured as follows. In Section 1.1, we collect all the necessary definitions. In Section 2, we develop a 
characterization of vector connectivity sets as hitting sets of a derived hypergraph, which is followed with hardness results 
in Section 3. A polynomial reduction for a problem generalizing VecCon to biconnected graphs is given in Section 4. Some of 
the algorithmic consequences of this reduction are examined in Section 5. We conclude the paper with some open problems 
in Section 6.

1.1. Definitions and notation

All graphs in this paper are simple and undirected, and will be denoted by G = (V , E), where V is the set of vertices 
and E is the set of edges. We use standard graph terminology. In particular, the degree of a vertex v in G is denoted 
by dG(v), the neighborhood and the closed neighborhood of a vertex v are denoted by NG(v) and NG [v], respectively, 
and V (G) refers to the vertex set of G . Moreover, for a set X ⊆ V (G), we define NG (X) = (∪v∈X NG(v)) \ X and denote 
by G[X] the subgraph of G induced by X . Given a graph G = (V , E), a set S ⊆ V and a vertex v ∈ V \ S , a v–S fan of order k
is a collection of k paths P1, . . . , Pk such that (1) every Pi is a path connecting v to a vertex of S , and (2) the paths are 
pairwise vertex-disjoint except at v , i.e., for all 1 ≤ i < j ≤ k, it holds that V (Pi) ∩ V (P j) = {v}.

Given a graph G = (V , E) and an integer-valued function r : V → Z+ = {0, 1, 2, . . .}, a vector connectivity set for (G, r) is a 
set S ⊆ V such that there exists a v–S fan of order r(v) for every v ∈ V \S . We say that r(v) is the requirement of vertex v . 
The VecCon problem is the problem of finding a vector connectivity set of minimum size for (G, r). The minimum size of a 
vector connectivity set for (G, r) is denoted by κ(G, r). In Boros et al. [4], it was assumed that vertex requirements do not 
exceed their degrees. Since our polynomial results are developed using the more general variant of the problem, we do not 
impose this restriction. At the same time, our hardness results also hold for the original, more restrictive variant.

For every v ∈ V and every set S ⊆ V \{v}, we say that v is r-linked to S if there is a v–S fan of order r in G . Hence, given 
an instance (G, r) of VecCon, a set S ⊆ V is a vector connectivity set for (G, r) if and only if every v ∈ V \ S is r(v)-linked 
to S . Given a vertex requirement function r : V → Z and a non-empty set X ⊆ V , we define R(X) := maxx∈X r(x). A graph G
is k-connected if |V (G)| > k and for every S ⊆ V (G) with |S| < k, the graph G − S is connected.

2. A characterization of vector connectivity sets

Menger’s Theorem [14] implies the following characterization of vector connectivity sets, showing that they are exactly 
the hitting sets of a certain hypergraph derived from graph G and vertex requirement function r. This characterization will 
be used in our proof of Theorem 1 in Section 3.

Proposition 1. For every graph G = (V , E), vertex requirements r : V → Z+ , and a set S ⊆ V , the following conditions are equivalent:

(i) S is a vector connectivity set for (G, r).
(ii) For every non-empty set X ⊆ V such that G[X] is connected and R(X) > |NG(X)|, we have S ∩ X 	= ∅.

Proof. First, let S be a vector connectivity set for (G, r). Suppose for a contradiction that there exists a non-empty set X ⊆ V
such that G[X] is connected, R(X) > |NG(X)|, and S ∩ X = ∅. Let C = NG(X), and let x ∈ X be a vertex such that r(x) > |C |. 
Since S ∩ X = ∅, we have x /∈ S . Moreover, the definition of C implies that in the graph G − C , there is no path from x to S . 
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