
Science of Computer Programming 111 (2015) 339–362

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Implementability of requirements in the four-variable model

Lucian M. Patcas ∗, Mark Lawford, Tom Maibaum

Department of Computing and Software, McMaster University, 1280 Main St. W., Hamilton, ON L8S4K1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 June 2014
Received in revised form 8 March 2015
Accepted 14 May 2015
Available online 27 May 2015

Keywords:
Safety-critical
Four-variable model
Implementability of requirements
Tolerances on requirements
Demonic calculus of relations

Many safety-critical computer systems are required to monitor and control physical 
processes. The four-variable model, which has been used successfully in industry for almost 
four decades, helps to clarify the behaviors of, and the boundaries between the physical 
processes, input/output devices, and software. In this model, the acceptable behaviors
of the software are constrained by the physical environment, system requirements, and 
input/output devices. If acceptable software behaviors are possible, then the system 
requirements are said to be implementable with respect to these constraints. The only 
acceptability condition proposed in the literature deems as acceptable software behaviors 
that can lead to undesirable system behaviors, in particular, nondeterministic system 
behaviors that for the same input sometimes do not produce any results and some other 
times produce expected results. In this sense, the acceptability condition can be seen 
as angelic. In this paper we strengthen the acceptability condition using the demonic 
calculus of relations such that no undesirable system or software behaviors are allowed and 
prove a necessary and sufficient implementability condition for the system requirements. 
As a byproduct, we also obtain a mathematical characterization of the least restrictive 
software specification, which, for all intents and purposes, can play the role of the software 
requirements.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many safety-critical systems in application domains such as aerospace, automotive, medical devices, or nuclear power 
generation are required to monitor and control physical processes. An example is the shutdown system of a nuclear reac-
tor which monitors the temperature and pressure inside the reactor and commands the reactor to enter a shutdown state 
whenever abnormal temperature and pressure values have been detected. Such systems are usually implemented using digi-
tal computers that are embedded into the larger system of the application and are interfaced with the physical environment 
using input devices (e.g., sensors, analog-to-digital converters) and output devices (e.g., digital-to-analog converters, actua-
tors). Based on the measured values of the physical parameters of interest, the software commands the actuators to apply 
stimuli to the environment with the purpose of maintaining certain properties in the environment.

Due to their safety-critical nature, getting these systems right is extremely important. A challenging design task is to 
find the right combination of input devices, output devices, and software such that their integration produces a system that 
satisfies the requirements. Systems engineers are responsible for this task and, in particular, for choosing the input and 
output devices. Software engineers must then determine the software part of the system so that the system requirements 

* Corresponding author.
E-mail addresses: patcaslm@mcmaster.ca (L.M. Patcas), lawford@mcmaster.ca (M. Lawford), maibaum@mcmaster.ca (T. Maibaum).

http://dx.doi.org/10.1016/j.scico.2015.05.007
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.05.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:patcaslm@mcmaster.ca
mailto:lawford@mcmaster.ca
mailto:maibaum@mcmaster.ca
http://dx.doi.org/10.1016/j.scico.2015.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.05.007&domain=pdf


340 L.M. Patcas et al. / Science of Computer Programming 111 (2015) 339–362

Fig. 1. The four-variable model.

are satisfied. Considering that changes in the specifications of the system requirements and hardware interfaces often arise 
during the system’s development life cycle, the process mentioned above becomes repetitive and thus even more demanding 
[1], [2, Section 2.6.3]. What if no software can satisfy the constraints imposed by the system requirements and chosen 
hardware interfaces? Time and resources will be spent trying to develop and verify repeatedly a system that can never 
satisfy the requirements.

Hence, we ask the following question: is the software part of the system possible at all given a particular choice of 
hardware interfacing between the system and the physical environment? A positive answer to this question would allow 
software engineers to proceed with a software design having the confidence that their efforts are not destined to fail 
from the start. In this case, the requirements of the system are said to be implementable with respect to the physical 
environment and chosen input/output devices, while the software is called acceptable. In the case of a negative answer, the 
next step would be for the systems engineers to understand why that is the case and determine the necessary changes to 
the specifications of the input and output devices, and possibly to the specification of the system requirements, in order 
for the software part of the system to become possible. Such a bidirectional interaction between systems engineering and 
software engineering is stressed in [2, Section 1.2] as being essential in producing dependable software-controlled systems.

In this paper we prove a necessary and sufficient implementability condition for requirements in the four-variable model 
proposed by Parnas and Madey [3]. This model, depicted in Fig. 1 and described in Section 2, has been used successfully 
in the development of safety-critical systems in industry and helps to clarify the behaviors of, and the boundaries between, 
the environment, sensors, actuators, and software. To be implementable, the system requirements must be feasible with 
respect to the environment (i.e., should specify only behaviors that obey the environmental constraints) and acceptable 
software behaviors must be possible given the chosen input/output devices. In Section 2, we discuss why the feasibility and 
acceptability conditions given in Parnas and Madey [3], which may be seen as angelic, are too weak and allow undesirable 
system and software behaviors. In Section 3 we introduce the demonic calculus of relations [4–6], which will be used to 
strengthen these conditions in Section 4. Using the strengthened feasibility and acceptability conditions, we will then give a 
necessary and sufficient implementability condition for the system requirements, along with a mathematical characterization 
of the software requirements. In Section 5 we describe a detailed analysis of the implementability of the requirements 
for a pressure sensor trip computer, a subsystem in the shutdown system of a nuclear power plant. This analysis also 
demonstrates the usefulness of the implementability conditions as rigorous and systematic guiding tools in determining the 
tolerances needed on the requirements of the pressure sensor trip computer.

This paper is an extended version of a previous paper by us [7]. Sections 2, 3 and 4 give more details, examples, and 
proofs; in particular, a more thorough comparison between demonic and angelic semantics is given. Section 5 is completely 
new.

2. The four-variable model

The model was used as early as 1978 as part of the Software Cost Reduction (SCR) program of the Naval Research 
Laboratory for specifying the flight software of the U.S. Navy’s A-7 aircraft [8]. The ideas from SCR were later extended 
into the Consortium of Requirements Engineering (CoRE) methodology, which was used for specifying the avionics system 
of the C-130J military aircraft in the 1980s [9]. Another significant example of a successful use of the four-variable model 
is the redesign of the software in the shutdown systems of the Darlington nuclear power plant in Ontario, Canada in the 
1990s [10–12]. In 2009, the four-variable model was used extensively in the Requirements Engineering Handbook [13] that 
was put together at the request of the U.S. Federal Aviation Administration.

2.1. System requirements and environmental constraints

In the four-variable model, REQ models the system requirements. At the system requirements level, a system is seen as a 
black-box that relates physical quantities measured by the system, called monitored variables, to physical quantities controlled 
by the system, called controlled variables. For example, monitored variables might be the pressure and temperature inside 
a nuclear reactor while controlled variables might be visual and audible alarms, as well as the trip signal that initiates 



Download English Version:

https://daneshyari.com/en/article/434053

Download Persian Version:

https://daneshyari.com/article/434053

Daneshyari.com

https://daneshyari.com/en/article/434053
https://daneshyari.com/article/434053
https://daneshyari.com

