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In online learning the performance of an algorithm is typically compared to the perfor-
mance of a fixed function from some class, with a quantity called regret. Forster [12]
proposed a last-step min–max algorithm which was somewhat simpler than the algorithm 
of Vovk [26], yet with the same regret. In fact the algorithm he analyzed assumed that 
the choices of the adversary are bounded, yielding artificially only the two extreme cases. 
We fix this problem by weighing the examples in such a way that the min–max problem 
will be well defined, and provide analysis with logarithmic regret that may have better 
multiplicative factor than both bounds of Forster [12] and Vovk [26]. We also derive a new 
bound that may be sub-logarithmic, as a recent bound of Orabona et al. [21], but may 
have better multiplicative factor. Finally, we analyze the algorithm in a weak-type of non-
stationary setting, and show a bound that is sublinear if the non-stationarity is sub-linear 
as well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the online learning regression problem, in which a learning algorithm tries to predict real numbers in a 
sequence of rounds given some side-information or inputs xt ∈ R

d . Real-world example applications for these algorithms 
are weather or stockmarket predictions. The goal of the algorithm is to have a small discrepancy between its predictions and 
the associated outcomes yt ∈ R. This discrepancy is measured with a loss function, such as the square loss. It is common to 
evaluate algorithms by their regret, the difference between the cumulative loss of an algorithm with the cumulative loss of 
any function taken from some class.

Forster [12] proposed a last-step min–max algorithm for online regression that makes a prediction assuming it is the 
last example to be observed, and the goal of the algorithm is indeed to minimize the regret with respect to linear functions. 
The resulting optimization problem he obtained was convex in the choice of the algorithm and the choice of the adversary, 
yielding an unbounded optimization problem. Forster circumvented this problem by assuming a bound Y over the choices 
of the adversary that should be known to the algorithm, yet his analysis is for the version with no bound.

We propose a modified last-step min–max algorithm with weights over examples, that are controlled in a way to obtain 
a problem that is concave over the choices of the adversary and convex over the choices of the algorithm. We analyze 
our algorithm and show a logarithmic-regret that may have a better multiplicative factor than the analysis of Forster. We 
derive additional analysis that is logarithmic in the loss of the reference function, rather than the number of rounds T . This 
behavior was recently given by Orabona et al. [21] for a certain online gradient descent algorithm. Yet, their bound [21] has 
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a similar multiplicative factor to that of Forster [12], while our bound has a potentially better multiplicative factor and it 
has the same dependence on the cumulative loss of the reference function as Orabona et al. [21]. Additionally, our algorithm 
and analysis are totally free of assuming the bound Y or knowing its value.

Competing with the best single function might not suffice for some problems. In many real-world applications, the 
true target function is not fixed, but may change from time to time. We bound the performance of our algorithm also in 
non-stationary environment, where we measure the complexity of the non-stationary environment by the total deviation 
of a collection of linear functions from some fixed reference point. We show that our algorithm maintains an average loss 
close to that of the best sequence of functions, as long as the total of this deviation is sublinear in the number of rounds T .

A short version appeared in The 23rd International Conference on Algorithmic Learning Theory (ALT 2012). This journal 
version of the paper includes additionally: (1) Recursive form of the algorithm and comparison to other algorithms of the 
same form (Section 3.1). (2) Kernel version of the algorithm (Section 3.2). (3) MAP (maximum a posteriori) interpretation of 
the minimization problems (Remark 1 and Remark 2). (4) All proofs and extended related-work section.

2. Problem setting

We work in the online setting for regression evaluated with the squared loss. Online algorithms work in rounds or 
iterations. On each iteration an online algorithm receives an instance xt ∈ R

d and predicts a real value ŷt ∈ R, it then 
receives a label yt ∈ R, possibly chosen by an adversary, suffers loss �t(alg) = �(yt , ŷt) = ( ŷt − yt)

2, updates its prediction 
rule, and proceeds to the next round. We assume later that the inputs xt are bounded, but not the labels yt (see also the 
end of Section 4 for comparison of various settings). The cumulative loss suffered by the algorithm over T iterations is,

LT (alg) =
T∑

t=1

�t(alg). (1)

The goal of the algorithm is to perform well compared to any predictor from some function class.
A common choice is to compare the performance of an algorithm with respect to a single function, or specifically a single 

linear function, f (x) = x�u, parameterized by a vector u ∈ R
d . Denote by �t(u) = (x�

t u − yt)
2 the instantaneous loss of a 

vector u, and by LT (u) = ∑T
t �t(u). The regret with respect to u is defined to be,

RT (u) =
T∑
t

(yt − ŷt)
2 − LT (u).

A desired goal of the algorithm is to have RT (u) = o(T ), that is, the average loss suffered by the algorithm will converge to 
the average loss of the best linear function u.

Below in Section 5 we will also consider an extension of this form of regret, and evaluate the performance of an algo-
rithm against some T -tuple of functions, (u1, . . . , uT ) ∈R

d × · · · ×R
d ,

RT (u1, . . . ,uT ) =
T∑
t

(yt − ŷt)
2 − LT (u1, . . . ,uT ),

where LT (u1, . . . , uT ) = ∑T
t �t(ut). Clearly, with no restriction of the T -tuple, any algorithm may suffer a regret linear in T , 

as one can set ut = xt(yt/‖xt‖2), and suffer zero quadratic loss in all rounds. Thus, we restrict below the possible choices 
of T -tuple either explicitly, or implicitly via some regularization.

Throughout the paper we use ‖ · ‖ for the �2-norm and | · | for the determinant.

3. A last step min–max algorithm

Our algorithm is derived based on a last-step min–max prediction, proposed by Forster [12] and Takimoto and War-
muth [24]. See also the work of Azoury and Warmuth [1]. An algorithm following this approach outputs the min–max 
prediction assuming the current iteration is the last one. The algorithm we describe below is based on an extension of this 
notion. For this purpose we introduce a weighted cumulative loss using positive input-dependent weights {at }T

t=1,

La
T (u) =

T∑
t=1

at
(

yt − u�xt
)2

, La
T (u1, . . . ,uT ) =

T∑
t=1

at
(

yt − u�
t xt

)2
.

The exact values of the weights at will be defined below to suit a convexity property. We will see that at depends on 
x1, x2, . . . , xt , but can be computed with a fixed computational cost.

Our variant of the last step min–max algorithm predicts,1

1 yT and ŷT serves both as quantifiers (over the max and min operators, respectively), and as the optimal values over this optimization problem.
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