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Processor fault diagnosis plays an important role in measuring the reliability of a 
multiprocessor system, and the diagnosabilities of many well-known multiprocessor 
systems have been investigated. The conditional diagnosability has been widely accepted 
as a new measure of diagnosability by assuming an additional condition that any faulty set 
can’t contain all the neighbors of any node in a multiprocessor system. In this paper, we 
explore algebraic and combinatorial properties of burnt pancake networks, and investigate 
the structural vulnerability as well as super and extra connectivities. Furthermore, we 
show that the classic diagnosability and the conditional diagnosability of n-dimensional 
burnt pancake network BPn (n ≥ 4) are n and 3n − 4, respectively.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Processors of a multiprocessor system are connected according to a given interconnection network. Fault tolerance is 
especially important for interconnection networks, since failures of network components are inevitable when the size of 
network grows rapidly. To be reliable, the rest of the network should stay connected when component faults occur. Obvi-
ously, this can only be guaranteed if the number of faults is smaller than the minimum degree of the network. When the 
number of faults is larger than the minimum degree, some extensions of connectivity are necessary, since the graph may 
become disconnected. Some generalizations of connectivity were introduced and examined for various classes of graphs [7], 
including super connectedness and tightly super connectedness, where only one singleton can appear in the remaining network. 
As the number of faults of the graph increases, it is desirable that when a few processors are separated from the rest, the 
largest component of the surviving network stays connected and the network will continue to be able to function. Many 
interconnection networks have been examined in this aspect, when the number of faults is roughly twice the minimum 
degree [8]. One can even go further and ask what happens when more vertices are deleted. This has been examined for 
the hypercube in [39–41] and for certain Cayley graphs generated by transpositions in [9], and it has been shown that 
the surviving network has a large component containing almost all vertices. Recently, Chang et al. [4,6] have explored the 
extra-connectives of hypercube as well as its variants, which will be useful in establishing the conditional diagnosability of 
the multiprocessor systems based on these structures.
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The process of identifying faulty processors in a system by analyzing the outcomes of available interprocessor tests is 
called system-level diagnosis. In 1967, Preparata et al. [34] established a foundation of system diagnosis and an original 
diagnostic model, called the PMC model. Its target is to identify the exact set of all faulty vertices before their repair or 
replacement. All tests are performed between two adjacent processors, and it was assumed that a test result is reliable (re-
spectively, unreliable) if the processor that initiates the test is fault-free (respectively, faulty). The comparison-based diagnosis 
models, first proposed by Malek [33] and Chwa and Hakimi [12], have been considered to be a practical approach to fault 
diagnosis in the multiprocessor systems. In these models, the same job is assigned to a pair of processors in the system 
and their outputs are compared by a central observer. This central observer performs diagnosis using the outcomes of these 
comparisons. Maeng and Malek [32] extended Malek’s comparison approach to allow the comparisons carried out by the 
processors themselves. Sengupta and Dahbura [35] developed this comparison approach such that the comparisons have no 
central unit involved.

The classical diagnosability of a system is quite small owing to the fact that it ignores the unlikelihood of some specific 
processors failing at the same time. Therefore, it is attractive to develop different measures of diagnosability based on ap-
plication environment, network topology, and statistics related to fault patterns. Lai et al. [26] developed a new measure of 
diagnosability, named as conditional diagnosability of a system under the PMC model, which assumes it is impossible that 
all adjacent nodes of one node are faulty simultaneously. That is, conditional diagnosability is the diagnosability under the 
condition that all adjacent nodes of any node can’t be faulty simultaneously. And they also showed that the conditional 
diagnosability of n-dimensions hypercube is 4(n − 2) + 1 for n ≥ 5. Lin et al. [31] determined that the conditional diag-
nosability of arrangement graph An,k (k ≥ 2, n ≥ k + 2) is (4k − 4)(n − k) − 3. Chang and Hsieh [5] explored the structural 
properties of star graph, which is isomorphic to An,n−1, and determined its conditional diagnosability. Chang et al. [3] also 
established that the conditional diagnosability of k-ary n-cubes is 8n − 7 for k ≥ 4 and n ≥ 4. Lin et al. [29] introduced the 
conditional diagnosis under the comparison model. By evaluating the size of connected components, they obtained that the 
conditional diagnosability of the star graph Sn under the comparison model is 3n − 7. Through the same method, Hsu et al. 
[19] proved that the conditional diagnosability of the hypercube Q n is 3n − 5. Specifically, Cheng et al. [10] and Zhou [42]
established the conditional diagnosability of (n, k)-star graphs, respectively; Zhou et al. [43] also established the conditional 
diagnosability of (n, k)-arrangement graphs under the comparison diagnosis model. For the n-dimensional shuffle-cube SQn , 
Lin et al. [30] proved that the conditional diagnosability is 3n − 9 (n = 4k + 2 and k ≥ 2). This paper, through the analysis 
of fault tolerance, establishes the conditional diagnosability of BPn under the comparison model and shows that it is 3n − 4
for n ≥ 4.

The rest of this paper is organized as follows. Section 2 introduces terminologies and notations about pancake networks 
and burnt pancake networks. Section 3 is devoted to structural properties of burnt pancake networks, and shows that 
burnt pancake networks are Cayley graphs based on the wreath product of the cyclic group Z2 and symmetric group Sn . 
The tightly super connectivity and extra connectivity of BPn are also derived through its vulnerability analysis. Section 4
concentrates on the main result of the paper that the conditional diagnosability of BPn (n ≥ 4) under the comparison model 
is 3n − 4. Section 5 concludes the paper.

2. Preliminaries

2.1. Terminologies and notations

For notation and terminology not defined here we follow [38]. Specifically, we use a graph G = G(V , E) to represent 
an interconnection network, where each node u ∈ V denotes a processor and each edge (u, v) ∈ E denotes a link between 
nodes u and v . If at least one end-vertex of an edge is faulty, the edge is said to be faulty; otherwise, the edge is said 
to be fault-free. For any vertex u of the graph G = (V , E), the neighborhood NG(v) of vertex v in G is defined as the 
set of all vertices which are adjacent to v , i.e., NG(v) = {u ∈ V | uv ∈ E}. Let S be a subset of V , the subgraph of G
induced by S , denoted by G[S], is the graph with the vertex-set S and the edge-set {(u, v) | (u, v) ∈ E, u, v ∈ S}. We define 
NG(S) = {v ∈ V \ S | ∃u ∈ S, uv ∈ E} = (

⋃
u∈S N(u)) \ S . We also denote NG [S] = NG(S) ∪ S . When G is clear from the 

context, we use N(v) to replace NG(v), N(S) to replace NG(S). For brevity, N({u, v}) and N[{u, v}] are written as N(u, v)

and N[u, v], respectively. We also denote, by |N(u)|, the degree d(u) of u. Let δ(G) = min{d(u) | u ∈ V } be the minimum 
degree of G . The neighborhood of a set S in a subgraph U is defined as the set NU (S) = (

⋃
v∈S NU (v)) \ S .

When G is a graph and any subset F ⊂ V (G), the notation G \ F denotes a graph obtained by removing all vertices 
in F from G and deleting those edges with at least one end-vertex in F , simultaneously. The notation M \ N denotes the 
difference set of two sets M and N , i.e., M \ N = {u | u ∈ M, u /∈ N}. We denote M � N as the symmetric difference set of two sets
M and N , i.e., M � N = (M \ N) ∪ (N \ M) = {x | x ∈ M ∪ N, x /∈ M ∩ N}. For any two graphs G1 = (V 1, E1) and G2 = (V 2, E2), 
we denote G1 ∪ G2 (resp. G1 ∩ G2) as a graph with vertex-set V 1 ∪ V 2 (resp. V 1 ∩ V 2) and edge-set E1 ∪ E2 (resp. E1 ∩ E2). 
A path in a graph is a sequence of distinct vertices so that there is an edge joining consecutive vertices, with the length 
being the number of vertices in the sequence minus 1. A cycle is a path of length at least 3 where there is an edge joining 
the first and last vertices. A path (or cycle) of length k is called a k-path (or k-cycle). We use d(u, v) to denote the distance 
between u and v , the length of a shortest path between u and v in G .

If G \ F is disconnected, F is called a separating set, namely vertex-cut. A separating set F is called a k-separating set
if |F | = k. The maximal connected subgraphs of G \ F are called components. A component is trivial if it has no edges; 
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