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Given a set of wireless links, a fundamental problem is to find the largest subset that
can transmit simultaneously, within the SINR model of interference. Significant progress
on this problem has been made in recent years. In this note, we study the problem in
the setting where we are given a fixed set of arbitrary powers each sender must use, and
an arbitrary gain matrix defining how signals fade. This variation of the problem appears
immune to most algorithmic approaches studied in the literature. Indeed it is very hard
to approximate since it generalizes the max independent set problem. Here, we propose
a simple semi-definite programming approach to the problem that yields constant factor
approximation, if the optimal solution is strictly larger than half of the input size.

© 2013 Published by Elsevier B.V.

1. Introduction

Given a set L = {�1, �2, . . . , �n} of links, where each link �v represents a communication request from a sender sv to
a receiver rv , what is the largest subset that can transmit simultaneously, given inter-link interference? We study this
fundamental problem, known as the capacity problem [1].

In the specific variation of the problem we study, we are also given, for every �v ∈ L, a transmission power P v > 0.
The powers received from senders to receivers are defined by an (n × n)-dimensional gain matrix G with positive entries.
Specifically, the signal received from sv at rw is G w v · P v . Thus an instance in this model can be described by the tuple
(L, P , G) where P is the vector of the power assignments P v for all �v .

Links that communicate simultaneously necessarily interfere with each other. We use the SINR or physical model of inter-
ference, known to capture reality with higher fidelity than graph-based models [2–4], which has recently gained substantial
attention in the analysis of wireless networks. In this model, a receiver rv successfully receives a message from a sender sv

if and only if the following condition holds:

G v v · P v∑
�w∈S\{�v } G v w · P w + N

� β, (1)

where N is a universal constant denoting the ambient noise, β � 1 denotes the minimum SINR (signal-to-interference-noise-
ratio) required for a message to be successfully received, and S is the set of concurrently scheduled links in the same slot.
We say that a link �v is feasible in S if Eq. (1) is satisfied for �v . A set S is feasible if each of its links is feasible.

Note that what we described above, without restrictions on the gain matrix G , is known as the abstract SINR model. In
the more commonly studied geometric SINR model, G v w is a polynomial function of d(sw , rv), where d(x, y) is the distance
between two points x and y. Our results naturally apply to that model as well. The geometric SINR model does not capture
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obstacles, reflections and other real life distortions, and it has been observed experimentally that signal receptions do not
follow simple geometric rules [5,6]. It is thus interesting to see what can be proven in the abstract model.

Our setting where the powers are given as part of the input is often called the fixed power case, as opposed to the power
control case where the algorithm can choose the power assignment. So far, research on fixed power has focused on oblivious
power assignments, where the power of a link is a (usually simple) function of the length of the link [7–10]. Recently, a
constant factor approximation algorithm to find the capacity in the power control case has also been achieved [11]. Unfortu-
nately, none of these techniques appear to extend to the case of arbitrary fixed powers (for either arbitrary or geometric gain
matrices). Yet, the problem of arbitrary fixed powers is not only natural, but has practical relevance, as commercial hard-
ware often does not have the capacity of choosing precise powers to implement either an arbitrary assignment à la [11], or
to implement many of the oblivious power assignments found in literature. Additionally, power may have been pre-selected
for other reasons, such as energy availability, in other parts or layers of the system.

In this paper, we prove the following theorem.

Theorem 1. Let (L, P , G) be an instance of the capacity problem in the abstract SINR model, satisfying |OPT| > 1
2 (1 + ε)|L| for some

ε > 0, where OPT is a maximum feasible subset of L using P . Then, there is a polynomial time randomized algorithm to find a feasible
subset of L of size Ω(ε|L|), with probability 1 − o(1).

For instances with a smaller optimum, we cannot provide any guarantees.
We do this by means of a semi-definite programming relaxation, which we show how to successfully round if the

condition |OPT| > 1
2 (1 + ε)|L| holds. In addition, we discuss numerical experiments we have performed. These experiments

show that the algorithm appears to work quite well on random instances, even better than the guarantees of Theorem 1.
Semi-definite programming has been a staple in designing approximation algorithms for NP-hard problems ever since the

seminal work of Goemans and Williams on the Max-CUT problem [12]. It is interesting to note that the discrete “classical”
problems closest to wireless capacity, namely the independent set problem and the graph coloring problem, have been
fruitfully studied using semi-definite programming [13,14]. The vertex cover problem, also relevant via its connection to
the independent set problem, also has SDP-based approximation algorithms [15,16]. Given this background, one may expect
some of the techniques to easily carry over to the capacity problem. Yet that does not appear to be the case, at least
not in a straightforward manner. A study of the aforementioned papers reveal that the discreteness of the problem plays an
important role in the bounds. For example, in [14], the analysis proceeds by bounding the probability of vectors representing
edges not being cut by a random hyperplane. Given the additive nature of the SINR model, it is not obvious how to extend
that analysis to this case. There have also been a number of results for these problems on hypergraphs [17–19]. Though
hypergraphs appear to be closer in spirit to the additive wireless model, they are still different, because the effect of each
node on any other node doesn’t change in the SINR model (as opposed to in a hypergraph, where it can be different based
on which edge they are in). Thus, the (sophisticated) methods on hypergraphs do not appear to translate immediately to
the SINR model either. Our SDP relaxation and rounding algorithms are quite simple in contrast to some of the previously
mentioned work. Whether or not advanced techniques can be extended to the SINR model remains to be seen.

1.1. Related work

Moscibroda and Wattenhofer [20] were the first to study of the scheduling complexity of arbitrary set of wireless links.
Early work on approximation algorithms produced approximation factors that grew with structural properties of the net-
work [21–23].

The first constant factor approximation algorithm was obtained for capacity problem for uniform power in [1] (see
also [7]) in R2 with α > 2. Kesselheim obtained a O (1)-approximation algorithm for the capacity problem with power con-
trol for doubling metrics [11]. Around the same time, the first constant factor algorithm for all sub-linear, length monotone
power assignments was achieved on general metrics [10]. Other recent studies in the SINR model include work on topo-
logical maps [24], distributed algorithms for scheduling [25], distributed power control [26] and auction based spectrum
allocation [27].

Other recent works on wireless capacity include [28–30].
We note that the term capacity has a different meaning in the stochastic networking literature (e.g. [31]).

2. SDP-based algorithm

Our algorithm (Algorithm 1) consists of two simple steps. First we solve a semi-definite program, which we show to be
a relaxation of the capacity problem. We then randomly select a subset of the links based on SDP solution. The feasible
links of this set is then output as the solution.

Some notation is needed. Vectors are denoted by �x, �sw , etc. The standard 2-norm of the vector �x is ‖�x‖. The ith entry of
�x is �x(i). The inner product of vectors �x and �y is denoted (�x · �y). Define gv v = P v G v v − βN and gv w = P w G v w for v �= w .
Note that we can assume without loss of generality that gv v � 0,∀v . Let OPT be a feasible subset of L of maximum size.
Note that n = |L|.

Consider the following program.
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