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Given a finite set X of strings, X is a hypercode if a string in X is not a subsequence 
of any other string in X . We consider hypercodes for involution codes, which are useful 
for DNA strand design, and define an involution hypercode. We then tackle the involution 
hypercode decidability problem; that is, to determine whether or not a given language 
is an involution hypercode. Based on the hypercode properties, we design a polynomial 
runtime algorithm for regular languages. We also prove that it is decidable whether or not 
a context-free language is an involution hypercode. Note that it is undecidable for some 
other involution codes such as involution prefix codes, suffix codes, and k-intercodes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In DNA computing and bioinformatics, a major topic is the encoding of DNA information based on the DNA code proper-
ties [4,6,7]. Many researchers have investigated the algebraic and code-theoretic properties of DNA encoding based on formal 
language theory [17,19,20,24,26]. DNA strands consist of four types of bases: adenine (A), guanine (G), cytosine (C ), and 
thymine (T ). The DNA alphabet, Δ = {A, G, C, T }, encodes the characteristics of every cellular organism. Hussini et al. [17]
generated DNA code words that avoid undesirable bonds and considered the decidability problem for these DNA code words. 
Jonoska et al. [19] introduced involution codes based on natural involution mapping, θ; A ↔ T and G ↔ C . They defined dif-
ferent types of involution codes such as θ -prefix-code, θ -suffix-code, θ -bifix-code, θ -infix-code, θ -outfix-code, θ -intercode, 
θ -comma-free-code, and θ -strict-code, and investigated the algebraic properties of each involution code (θ -code). Jonoska 
and her co-authors [20] also extended the notion of solid codes and join codes to involution solid codes (θ -solid) and invo-
lution join codes (θ -join). Kari and Mahalingam [24] continued the study of the algebraic properties of DNA languages that 
avoid intermolecular cross hybridizations and made several observations on the closure properties of these languages. Kari 
et al. [25] applied the hairpin-free DNA structure to algebraic codes.

DNA transcription is the process of creating a complementary RNA copy of a sequence of DNA, and DNA translation 
produces a specific amino acid chain using mRNA produced by the transcription [30]. When a DNA replication occurs in the 
process of transcription, errors may occur at any time and these errors cause a mutation. The errors caused by the addition 
or deletion of a nucleotide shift the specific codons in the mRNA during the process of DNA translation. We call this type of 
mutation a frameshift mutation. For example, in Fig. 1, we have a mutated amino acid, Gly, and a chain termination because 
of the frameshift caused by the newly added DNA C between C and A. This demonstrates that a frameshift gives rise to a 
protein synthesized with an added or deleted nucleotide, which is often shortened and nonfunctional.
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Fig. 1. An example of frameshift mutation.

Frameshift mutations motivate us to examine the operations of insertion and deletion of DNA. We generalize these 
operations and allow multiple insertions or deletions. This leads us to study involution hypercodes. In other words, we 
investigate DNA codes that do not allow multiple insertions or deletions. In coding theory, a set X of strings is a hypercode 
if a string is not a subsequence of any other string in X [31]. Thus, a hypercode is always finite. However, a θ -hypercode 
may not be finite since an involution hypercode (θ -hypercode) is defined over an involution mapping, θ , of a language.

One can efficiently decide whether or not a regular language is a certain code, whereas the same question is often 
undecidable for a context-free language [1,11,12,21]. Recently, Jonoska et al. [20] showed that it is decidable whether or 
not a regular language is a certain type of an involution code. Kephart and Lefevre [26] designed a polynomial algorithm 
that checks whether or not a regular language is θ -infix and θ -comma-free using the square automata. Thus, it is natural to 
investigate the decidability of θ -hypercodes for regular languages and context-free languages.

We briefly recall several involution codes and their properties in Section 2. Then, in Section 3, we formally define 
θ -hypercodes and study their properties. Next, we design two algorithms that determine whether or not a given regular 
language is a hypercode or a θ -hypercode based on 1) the intersection emptiness test of two FAs and 2) the alignment 
automaton [2] of two FAs. We examine the decidability problem for context-free languages and prove the decidability for 
θ -hypercodes and the undecidability for some other θ -codes. We mention a possible future direction and conclude the 
paper in Section 4.

2. Preliminaries

Let Σ be a finite alphabet and Σ∗ be a set of all strings over Σ . A language over Σ is any subset of Σ∗ . The symbol ∅
denotes the empty language, the symbol λ denotes the null string, and Σ+ denotes Σ∗ \ {λ}. For two strings x and y
over Σ , we say that x is a prefix of y if y = xz for a string z ∈ Σ∗ . We say that x is a proper prefix of y if x is a prefix of 
y and x �= y. Similarly, x is a suffix of y if y = zx for some string z ∈ Σ∗ . We define x to be an infix (or substring) of y if 
y = uxv for two strings u, v ∈ Σ∗ .

A finite-state automaton (FA) M is specified by a tuple M = (Q , Σ, δ, s, F ), where Q is a finite set of states, Σ is an 
input alphabet, δ : Q ×Σ → 2Q is a transition function, s ∈ Q is the start state, and F ⊆ Q is a set of final states. Let |Q | be 
the number of states in Q , and |δ| be the number of transitions in δ. Then the size |M| of M is |Q | + |δ|. Given a transition 
δ(p, a) = q, we say that p has an out-transition and q has an in-transition. We define M to be non-returning if the start 
state of M does not have any in-transitions, and M to be non-exiting if a final state of M does not have any out-transition. 
A string x over Σ is accepted by M if there is a labeled path from s to a final state such that this path reads x. We call 
this path an accepting path. Then, the language L(M) of M is the set of all strings spelled out by accepting paths in M . We 
assume that M has only useful states; that is, each state of M appears in an accepting path.

Given a language L over Σ , let

P(L) = {
u

∣∣ uv ∈ L for some u ∈ Σ∗ and v ∈ Σ+}
and

S(L) = {
u

∣∣ vu ∈ L for some u ∈ Σ∗ and v ∈ Σ+}
.

For a language L over Σ , we define a language L to be
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