ELSEVIER

Contents lists available at ScienceDirect

# Theoretical Computer Science

www.elsevier.com/locate/tcs



Note

# On the structure of Thue–Morse subwords, with an application to dynamical systems



### Michel Dekking

DIAM, Delft University of Technology, Faculty EEMCS, P.O. Box 5031, 2600 GA Delft, The Netherlands

#### ARTICLE INFO

Article history:
Received 11 May 2014
Accepted 20 July 2014
Available online 30 July 2014
Communicated by N. Ollinger

Keywords: Thue-Morse sequence Thue-Morse factors Substitution dynamical system Conjugacy

#### ABSTRACT

We give an in-depth analysis of the subwords of the Thue–Morse sequence. This allows us to prove that there are infinitely many injective primitive substitutions with Perron–Frobenius eigenvalue 2 that generate a symbolic dynamical system topologically conjugate to the Thue–Morse dynamical system.

© 2014 Elsevier B.V. All rights reserved.

#### 1. Introduction

We consider the bi-infinite Thue–Morse sequence  $x = \dots 10010110 \cdot 01101001\dots$  fixed point of the substitution  $\theta$  given by

$$\theta(0) = 01, \qquad \theta(1) = 10.$$

By taking its orbit closure under the shift map, the sequence *x* generates a dynamical system called the Thue–Morse dynamical system. In the recent paper [3] it is proved that there are 12 primitive injective substitutions of length 2 that generate a system topologically conjugate to the Thue–Morse system. A natural question is: what is the list of all primitive injective substitutions whose incidence matrix has maximal eigenvalue 2 that generate a system topologically conjugate to the Thue–Morse system?

In general, when  $\alpha$  is a substitution on an alphabet A, let  $\mathcal{L}_{\alpha}$  be the language of  $\alpha$ , i.e., the collection of all words occurring in some power  $\alpha^n(a)$ , for some  $a \in A$ . We write  $X_{\alpha}$  for the set of bi-infinite sequences each of whose finite factors belongs to  $\mathcal{L}_{\alpha}$ . Under the left shift it is a minimal symbolic system whenever  $\alpha$  is primitive. Two symbolic systems  $X_{\alpha}$  and  $X_{\beta}$  are called topologically conjugate or simply conjugate if there is a bi-continuous bijective map from one to the other that preserves the shift.

The usual way to generate systems topologically conjugate to a given substitution dynamical system is to consider the N-block substitution associated with the substitution [5,3]. See Section 3 for more details, here we give an example: the 5-block substitution  $\theta_5$  associated with the Thue–Morse substitution  $\theta$ .

There are twelve Thue–Morse subwords of length N=5 (see Example 2.1 in Section 2 for the complete list):  $w_1=00101,\ldots,w_4=01011,\ldots,w_{12}=11010$ .

The  $\theta_5$ -image of a  $w_i$  is obtained as the prefix of length 5 of  $\theta(w_i)$  followed by the prefix of length 5 of  $\theta(w_i)$  with the first letter discarded. For example, since  $\theta(00101) = 0101100110$ , we have  $\theta_5(w_1) = w_4w_{10}$ , since  $w_{10} = 10110$ . In this way one obtains

$$\theta_5(w_1) = w_4 w_{10},$$
  $\theta_5(w_4) = w_5 w_{11},$   $\theta_5(w_7) = w_7 w_1,$   $\theta_5(w_{10}) = w_8 w_2,$   $\theta_5(w_2) = w_4 w_{10},$   $\theta_5(w_5) = w_6 w_{12},$   $\theta_5(w_8) = w_7 w_1,$   $\theta_5(w_{11}) = w_9 w_3,$   $\theta_5(w_3) = w_5 w_{11},$   $\theta_5(w_6) = w_6 w_{12},$   $\theta_5(w_9) = w_8 w_2,$   $\theta_5(w_{12}) = w_9 w_3,$ 

We go from this substitution, which is not injective,<sup>1</sup> to an injective one by redistributing the four letters in the  $\theta_5$ -images of words of length 2 with odd indices—which always occur in pairs, i.e., the couples  $w_5w_{11}$ ,  $w_7w_1$ , and  $w_9w_3$ . Concretely, we define a new substitution  $\zeta_5$  by keeping  $\zeta_5(w_i) = \theta_5(w_i)$  for all words with an even index, and changing the six others in pairs as, e.g.,

$$\theta_5(w_7)\theta_5(w_1) = w_7w_1$$
  $w_4w_{10} = w_7w_1w_4$   $w_{10} = \zeta_5(w_7)\zeta_5(w_1)$ .

This leads to the substitution given by

$$\zeta_5(w_1) = w_{10}, \qquad \zeta_5(w_4) = w_5 w_{11}, \qquad \zeta_5(w_7) = w_7 w_1 w_4, \qquad \zeta_5(w_{10}) = w_8 w_2$$
 
$$\zeta_5(w_2) = w_4 w_{10}, \qquad \zeta_5(w_5) = w_6 w_{12} w_9, \qquad \zeta_5(w_8) = w_7 w_1, \qquad \zeta_5(w_{11}) = w_3,$$
 
$$\zeta_5(w_3) = w_{11}, \qquad \zeta_5(w_6) = w_6 w_{12}, \qquad \zeta_5(w_9) = w_8 w_2 w_5, \qquad \zeta_5(w_{12}) = w_9 w_3$$

Obviously the substitution  $\zeta_5$  is injective, and it is not hard to see that  $\zeta_5^n(w_6) = \theta_5^n(w_6)$  for all  $n \ge 1$ . Thus, if  $\zeta_5$  would be a primitive substitution, then  $\zeta_5$  would generate the same dynamical system as  $\theta_5$ . However,  $\zeta_5$  is *not* primitive, since  $\zeta_5^2(w_3) = \zeta_5(w_{11}) = w_3$ .

In Section 4 we will repair this defect by defining a substitution  $\eta_5$  which generates the same dynamical system as  $\theta_5$ , but *is* primitive. Actually, we give this construction for all  $\eta_N$ , where N is a power of two plus one. For this we need an explicit expression for  $\theta_N$ , which is given in Section 3, based on the combinatorial analysis in Section 2. Our main result is in Section 6: there exist infinitely many substitutions in the Thue–Morse conjugacy class if we allow also non-constant length substitutions with Perron–Frobenius eigenvalue 2.

#### 2. Combinatorics of Thue-Morse subwords

The subwords of the Thue–Morse sequence have been well studied (see, e.g., [6,1]). We show here that the subwords of length  $N=2^m+1$  have a particularly elegant structure for  $m=2,3,\ldots$ . Let  $\mathcal{A}_m$  be the set of these words. It is well known (and will be reproved here) that the cardinality of  $\mathcal{A}_m$  equals  $|\mathcal{A}_m|=3\cdot 2^m$  (see [6]). We lexicographically order the words in  $\mathcal{A}_m$ , representing them as

$$w_1^m < w_2^m < \cdots < w_{|\mathcal{A}_m|}^m.$$

Crucial to the following analysis is the partition of  $A_m$  into 4 sets

$$\mathcal{A}_m = \mathcal{Q}_1 \cup \mathcal{Q}_2 \cup \mathcal{Q}_3 \cup \mathcal{Q}_4,$$

where each  $Q_k$  consists of one quarter of consecutive words from  $A_m$ . If we want to emphasize the dependence on m we write  $Q_k^m$ . Let

$$q_k = \min Q_k$$
, for  $k = 1, 2, 3, 4$ .

Thus

$$q_1^m = w_1^m, \qquad q_2^m = w_{\frac{1}{4}|\mathcal{A}_m|+1}^m, \qquad q_3^m = w_{\frac{1}{2}|\mathcal{A}_m|+1}^m, \qquad q_4^m = w_{\frac{3}{4}|\mathcal{A}_m|+1}^m.$$

Let  $f_0^\omega = 0110\ldots$  and  $f_1^\omega = 1001\ldots$  be the two infinite fixed points of  $\theta$ , and let  $f_0 = f_0^m$  and  $f_1 = f_1^m$  be the length  $2^m + 1$  prefixes of  $f_0^\omega$  and  $f_1^\omega$ .

**Example 2.1.** The case m=2. The set  $\mathcal{A}_2$  is given by  $\{00101, 00110, 01001, 01011, 01100, 01101, 10010, 10011, 10100, 10110, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11001, 11$ 

We use frequently mirror invariance of the Thue–Morse words, i.e., if the mirroring operation is defined as the length 1 substitution given by  $\widetilde{0} = 1$ ,  $\widetilde{1} = 0$ , then u is a Thue–Morse subword if and only if  $\widetilde{u}$  is a Thue–Morse subword. This follows directly from  $\widetilde{\theta(0)} = \theta(1)$ .

The Thue–Morse substitution  $\theta$  has the following trivial, but important property.

<sup>&</sup>lt;sup>1</sup> A substitution  $\alpha$  is called injective if  $a \neq b$  implies  $\alpha(a) \neq \alpha(b)$ .

## Download English Version:

# https://daneshyari.com/en/article/434114

Download Persian Version:

https://daneshyari.com/article/434114

<u>Daneshyari.com</u>