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We give an in-depth analysis of the subwords of the Thue–Morse sequence. This allows 
us to prove that there are infinitely many injective primitive substitutions with Perron–
Frobenius eigenvalue 2 that generate a symbolic dynamical system topologically conjugate 
to the Thue–Morse dynamical system.
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1. Introduction

We consider the bi-infinite Thue–Morse sequence x = . . . 10010110 · 01101001 . . . fixed point of the substitution θ given 
by

θ(0) = 01, θ(1) = 10.

By taking its orbit closure under the shift map, the sequence x generates a dynamical system called the Thue–Morse dy-
namical system. In the recent paper [3] it is proved that there are 12 primitive injective substitutions of length 2 that 
generate a system topologically conjugate to the Thue–Morse system. A natural question is: what is the list of all primitive 
injective substitutions whose incidence matrix has maximal eigenvalue 2 that generate a system topologically conjugate to 
the Thue–Morse system?

In general, when α is a substitution on an alphabet A, let Lα be the language of α, i.e., the collection of all words 
occurring in some power αn(a), for some a ∈ A. We write Xα for the set of bi-infinite sequences each of whose finite 
factors belongs to Lα . Under the left shift it is a minimal symbolic system whenever α is primitive. Two symbolic systems 
Xα and Xβ are called topologically conjugate or simply conjugate if there is a bi-continuous bijective map from one to the 
other that preserves the shift.

The usual way to generate systems topologically conjugate to a given substitution dynamical system is to consider the 
N-block substitution associated with the substitution [5,3]. See Section 3 for more details, here we give an example: the 
5-block substitution θ5 associated with the Thue–Morse substitution θ .

There are twelve Thue–Morse subwords of length N = 5 (see Example 2.1 in Section 2 for the complete list): w1 =
00101, . . . , w4 = 01011, . . . , w12 = 11010.
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The θ5-image of a wi is obtained as the prefix of length 5 of θ(wi) followed by the prefix of length 5 of θ(wi) with 
the first letter discarded. For example, since θ(00101) = 0101100110, we have θ5(w1) = w4 w10, since w10 = 10110. In this 
way one obtains

θ5(w1) = w4 w10, θ5(w4) = w5 w11, θ5(w7) = w7 w1, θ5(w10) = w8 w2,

θ5(w2) = w4 w10, θ5(w5) = w6 w12, θ5(w8) = w7 w1, θ5(w11) = w9 w3,

θ5(w3) = w5 w11, θ5(w6) = w6 w12, θ5(w9) = w8 w2, θ5(w12) = w9 w3

We go from this substitution, which is not injective,1 to an injective one by redistributing the four letters in the θ5-images 
of words of length 2 with odd indices—which always occur in pairs, i.e., the couples w5 w11, w7 w1, and w9 w3. Concretely, 
we define a new substitution ζ5 by keeping ζ5(wi) = θ5(wi) for all words with an even index, and changing the six others 
in pairs as, e.g.,

θ5(w7)θ5(w1) = w7 w1 w4 w10 = w7 w1 w4 w10 = ζ5(w7)ζ5(w1).

This leads to the substitution given by

ζ5(w1) = w10, ζ5(w4) = w5 w11, ζ5(w7) = w7 w1 w4, ζ5(w10) = w8 w2,

ζ5(w2) = w4 w10, ζ5(w5) = w6 w12 w9, ζ5(w8) = w7 w1, ζ5(w11) = w3,

ζ5(w3) = w11, ζ5(w6) = w6 w12, ζ5(w9) = w8 w2 w5, ζ5(w12) = w9 w3

Obviously the substitution ζ5 is injective, and it is not hard to see that ζn
5 (w6) = θn

5 (w6) for all n ≥ 1. Thus, if ζ5 would 
be a primitive substitution, then ζ5 would generate the same dynamical system as θ5. However, ζ5 is not primitive, since 
ζ 2

5 (w3) = ζ5(w11) = w3.
In Section 4 we will repair this defect by defining a substitution η5 which generates the same dynamical system as θ5, 

but is primitive. Actually, we give this construction for all ηN , where N is a power of two plus one. For this we need an 
explicit expression for θN , which is given in Section 3, based on the combinatorial analysis in Section 2. Our main result 
is in Section 6: there exist infinitely many substitutions in the Thue–Morse conjugacy class if we allow also non-constant 
length substitutions with Perron–Frobenius eigenvalue 2.

2. Combinatorics of Thue–Morse subwords

The subwords of the Thue–Morse sequence have been well studied (see, e.g., [6,1]). We show here that the subwords of 
length N = 2m + 1 have a particularly elegant structure for m = 2, 3, . . . . Let Am be the set of these words. It is well known 
(and will be reproved here) that the cardinality of Am equals |Am| = 3 · 2m (see [6]). We lexicographically order the words 
in Am , representing them as

wm
1 < wm

2 < · · · < wm|Am|.
Crucial to the following analysis is the partition of Am into 4 sets

Am = Q1 ∪Q2 ∪Q3 ∪Q4,

where each Qk consists of one quarter of consecutive words from Am . If we want to emphasize the dependence on m we 
write Qm

k . Let

qk = minQk, for k = 1,2,3,4.

Thus

qm
1 = wm

1 , qm
2 = wm

1
4 |Am|+1

, qm
3 = wm

1
2 |Am|+1

, qm
4 = wm

3
4 |Am|+1

.

Let f ω
0 = 0110 . . . and f ω

1 = 1001 . . . be the two infinite fixed points of θ , and let f0 = f m
0 and f1 = f m

1 be the length 
2m + 1 prefixes of f ω

0 and f ω
1 .

Example 2.1. The case m = 2. The set A2 is given by {00101, 00110, 01001, 01011, 01100, 01101, 10010, 10011, 10100,

10110, 11001, 11010}. Here q1 = 00101, q2 = 01011, q3 = 10010, q4 = 10110, and f0 = 01101, f1 = 10010.

We use frequently mirror invariance of the Thue–Morse words, i.e., if the mirroring operation is defined as the length 1 
substitution given by ̃0 = 1, ̃1 = 0, then u is a Thue–Morse subword if and only if ̃u is a Thue–Morse subword. This follows 
directly from ˜θ(0) = θ(1).

The Thue–Morse substitution θ has the following trivial, but important property.

1 A substitution α is called injective if a �= b implies α(a) �= α(b).
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